sage-fredt5-large

banner

Summary

The model corrects spelling and punctuation errors and typos by bringing all the words in the text to the norm of the Russian language. Corrector had been trained based on the model FRED-T5-large. An extensive dataset with “artificial” errors was taken as a training corpus: the corpus was assembled on the basis of the Russian-language Wikipedia and transcripts of Russian-language videos, then typos and spelling errors were automatically introduced into it using the library SAGE.

Public references

Examples

Input Output
И не чсно прохожим в этот день непогожйи почему я веселый такйо И не ясно прохожим в этот день непогожий, почему я веселый такой.
Каждй день воттак делой, и спена балеть нибудет. А вотак каждый день ниделай Каждый день вот так делай и спина болеть не будет. А вот так каждый день не делай.
Основая цель мероприятия практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных проишествий сокращение временных показателей реагирования. Основная цель мероприятия — практическая отработка навыков по оказанию помощи гражданам, попавшим в ДТП, а также повышение и совершенствование уровня профессиональной подготовки сотрудников МЧС при проведении аварийно-спасательных работ по ликвидации последствий дорожно-транспортных происшествий, сокращение временных показателей реагирования

Metrics

Quality

Below are automatic metrics for determining the correctness of the spell checkers. We compare our solution with both open automatic spell checkers and the ChatGPT family of models on all four available datasets:

  • RUSpellRU: texts collected from (LiveJournal), with manually corrected typos and errors;
  • MultidomainGold: examples from 7 text sources, including the open web, news, social media, reviews, subtitles, policy documents and literary works;
  • MedSpellChecker: texts with errors from medical anamnesis;
  • GitHubTypoCorpusRu: spelling errors and typos in commits from GitHub;

RUSpellRU

Model Pr. (spell) Rec. (spell) F1 (spell) Pr. (punc) Rec. (punc) F1 (punc) Pr. (case) Rec. (case) F1 (case)
sage-fredt5-large 57.3 68.0 62.2 86.7 46.1 60.2 92.1 67.8 78.1
sage-fredt5-large (ft) 88.4 80.9 84.5 88.2 85.3 86.8 95.5 94.0 94.7
sage-ai-service 90.3 86.3 88.2 90.3 86.6 88.4 95.2 95.9 95.6
gpt-3.5-turbo 33.6 58.5 42.7 85.9 64.6 73.7 84.9 73.9 79.0
gpt-4 54.9 76.7 64.0 84.0 82.3 83.2 91.5 90.2 90.9

MultidomainGold

Model Pr. (spell) Rec. (spell) F1 (spell) Pr. (punc) Rec. (punc) F1 (punc) Pr. (case) Rec. (case) F1 (case)
sage-fredt5-large 43.4 49.7 46.3 21.8 21.3 21.6 58.8 23.9 34.0
sage-fredt5-large (ft) 80.3 75.1 77.6 69.0 66.5 67.7 78.6 80.0 79.3
sage-ai-service 81.6 77.7 79.6 70.2 67.5 68.8 80.5 80.5 80.5
gpt-3.5-turbo 18.8 48.1 27.1 42.0 31.8 36.2 47.1 51.3 49.1
gpt-4 25.4 68.0 37.0 57.8 54.3 56.0 54.0 67.5 60.0

MedSpellChecker

Model Pr. (spell) Rec. (spell) F1 (spell) Pr. (punc) Rec. (punc) F1 (punc) Pr. (case) Rec. (case) F1 (case)
sage-fredt5-large 35.2 54.5 42.8 19.2 13.2 15.7 48.7 36.8 41.9
sage-fredt5-large (ft) 72.5 72.2 72.3 74.6 66.4 70.3 79.3 85.1 82.1
sage-ai-service 71.3 73.5 72.4 75.1 69.2 72.0 80.9 72.8 76.6
gpt-3.5-turbo 14.7 45.9 22.3 69.9 52.3 59.8 26.4 41.8 32.3
gpt-4 37.8 72.3 49.6 81.4 64.3 71.9 73.0 62.1 67.1

GitHubTypoCorpusRu

Model Pr. (spell) Rec. (spell) F1 (spell) Pr. (punc) Rec. (punc) F1 (punc) Pr. (case) Rec. (case) F1 (case)
sage-fredt5-large 46.0 46.6 46.3 22.7 18.3 20.2 12.0 13.2 12.6
sage-fredt5-large (ft) 67.5 53.2 59.5 48.5 38.0 42.6 37.3 50.0 42.7
sage-ai-service 70.8 56.3 62.7 48.9 35.8 41.4 32.9 45.3 38.1
gpt-3.5-turbo 23.7 38.7 29.4 37.6 23.3 28.7 19.6 35.9 25.3
gpt-4 27.0 52.8 35.7 45.9 32.6 38.2 25.7 36.8 30.2

How to use

from transformers import AutoTokenizer, AutoModelForSeq2SeqLM

tokenizer = AutoTokenizer.from_pretrained("ai-forever/sage-fredt5-large")
model = AutoModelForSeq2SeqLM.from_pretrained("ai-forever/sage-fredt5-large", device_map='cuda')

sentence = "И не чсно прохожим в этот день непогожйи почему я веселый такйо"
inputs = tokenizer(sentence, max_length=None, padding="longest", truncation=False, return_tensors="pt")
outputs = model.generate(**inputs.to(model.device), max_length = inputs["input_ids"].size(1) * 1.5)
print(tokenizer.batch_decode(outputs, skip_special_tokens=True))

# ["И не ясно прохожим в этот день непогожий, почему я весёлый такой?"]

Limitations

  • The model is intended to be fine-tuned on sets with natural errors for better performance. The realized model is a pre-train and pre-train task is different from the usual spell checking in terms of density of the noise in a corpus and its origin;
  • Complex formatting may cause some trouble in output generation.

Resources

License

Model FRED-T5-large, on the basis of which our solution is made, and its source code are supplied under the MIT license. Our solution comes with MIT license also.

Specifications

  • File size: 3.3 Gb;
  • Framework: pytorch
  • Version: v1.0
  • Developer: SberDevices, AGI NLP

Contacts

nikita.martynov.98@list.ru

Downloads last month
4,289
Safetensors
Model size
820M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including ai-forever/sage-fredt5-large

Evaluation results