Edit model card

MultiIndicParaphraseGenerationSS

This repository contains the IndicBARTSS checkpoint finetuned on the 11 languages of IndicParaphrase dataset. For finetuning details, see the paper.

  • Supported languages: Assamese, Bengali, Gujarati, Hindi, Marathi, Odiya, Punjabi, Kannada, Malayalam, Tamil, and Telugu. Not all of these languages are supported by mBART50 and mT5.
  • The model is much smaller than the mBART and mT5(-base) models, so less computationally expensive for decoding.
  • Trained on large Indic language corpora (5.53 million sentences).
  • Unlike MultiIndicParaphraseGeneration each language is written in its own script, so you do not need to perform any script mapping to/from Devanagari.

Using this model in transformers

from transformers import MBartForConditionalGeneration, AutoModelForSeq2SeqLM
from transformers import AlbertTokenizer, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
# Or use tokenizer = AlbertTokenizer.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS", do_lower_case=False, use_fast=False, keep_accents=True)
model = AutoModelForSeq2SeqLM.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")
# Or use model = MBartForConditionalGeneration.from_pretrained("ai4bharat/MultiIndicParaphraseGenerationSS")

# Some initial mapping
bos_id = tokenizer._convert_token_to_id_with_added_voc("<s>")
eos_id = tokenizer._convert_token_to_id_with_added_voc("</s>")
pad_id = tokenizer._convert_token_to_id_with_added_voc("<pad>")

# To get lang_id use any of ['<2as>', '<2bn>', '<2en>', '<2gu>', '<2hi>', '<2kn>', '<2ml>', '<2mr>', '<2or>', '<2pa>', '<2ta>', '<2te>']
# First tokenize the input. The format below is how IndicBART was trained so the input should be "Sentence </s> <2xx>" where xx is the language code. Similarly, the output should be "<2yy> Sentence </s>".
inp = tokenizer("दिल्ली यूनिवर्सिटी देश की प्रसिद्ध यूनिवर्सिटी में से एक है. </s> <2hi>", add_special_tokens=False, return_tensors="pt", padding=True).input_ids 

# For generation. Pardon the messiness. Note the decoder_start_token_id.

model_output=model.generate(inp, use_cache=True,no_repeat_ngram_size=3,encoder_no_repeat_ngram_size=3, num_beams=4, max_length=20, min_length=1, early_stopping=True, pad_token_id=pad_id, bos_token_id=bos_id, eos_token_id=eos_id, decoder_start_token_id=tokenizer._convert_token_to_id_with_added_voc("<2hi>"))

# Decode to get output strings
decoded_output=tokenizer.decode(model_output[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
print(decoded_output) #दिल्ली यूनिवर्सिटी भारत की सबसे बड़ी यूनिवर्सिटी है।

Benchmarks

Scores on the IndicParaphrase test sets are as follows:

Language BLEU / Self-BLEU / iBLEU
as 1.19 / 1.64 / 0.34
bn 10.04 / 1.08 / 6.70
gu 18.69 / 1.62 / 12.60
hi 25.05 / 1.75 / 17.01
kn 13.14 / 1.89 / 8.63
ml 8.71 / 1.36 / 5.69
mr 18.50 / 1.49 / 12.50
or 23.02 / 2.68 / 15.31
pa 17.61 / 1.37 / 11.92
ta 16.25 / 2.13 / 10.74
te 14.16 / 2.29 / 9.23

Citation

If you use this model, please cite the following paper:

@inproceedings{Kumar2022IndicNLGSM,
  title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages},
  author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar},
  year={2022},
  url = "https://arxiv.org/abs/2203.05437"
  }
Downloads last month
16
Safetensors
Model size
244M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ai4bharat/MultiIndicParaphraseGenerationSS

Spaces using ai4bharat/MultiIndicParaphraseGenerationSS 2