You need to agree to share your contact information to access this model

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this model content.

ko-news-summarization

This model is a fine-tuned version of psyche/KoT5-summarization on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.9267
  • Validation Loss: 1.2897
  • Train Rougel: tf.Tensor(0.39195082, shape=(), dtype=float32)
  • Epoch: 6

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Validation Loss Train Rougel Epoch
1.2735 1.2266 tf.Tensor(0.38460648, shape=(), dtype=float32) 0
1.2050 1.2290 tf.Tensor(0.38383868, shape=(), dtype=float32) 1
1.1428 1.2320 tf.Tensor(0.38434482, shape=(), dtype=float32) 2
1.0866 1.2497 tf.Tensor(0.38514885, shape=(), dtype=float32) 3
1.0311 1.2612 tf.Tensor(0.3883608, shape=(), dtype=float32) 4
0.9740 1.2713 tf.Tensor(0.39306718, shape=(), dtype=float32) 5
0.9267 1.2897 tf.Tensor(0.39195082, shape=(), dtype=float32) 6

Framework versions

  • Transformers 4.25.1
  • TensorFlow 2.9.2
  • Datasets 2.8.0
  • Tokenizers 0.13.2
Downloads last month
0
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.