Florence-2-FT-JP-DocVQA

This model is a fine-tuned version of microsoft/Florence-2-base-ft on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4379

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
12.6548 0.9662 100 2.8146
11.1776 1.9275 200 2.6563
10.6997 2.8889 300 2.6233
10.4599 3.8502 400 2.5377
10.1308 4.8116 500 2.5149
10.0422 5.7729 600 2.4952
9.9102 6.7343 700 2.4699
9.9127 7.6957 800 2.4560
9.8393 8.6570 900 2.4552
9.7839 9.6184 1000 2.4379

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
34
Safetensors
Model size
271M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for aipib/Florence-2-FT-JP-DocVQA

Finetuned
(15)
this model