Florence-2-FT-JP-OCR

This model is a fine-tuned version of microsoft/Florence-2-base-ft on EtashGuha/JapaneseDocQA dataset. It achieves the following results on the evaluation set:

  • Loss: 2.5827

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss
14.3012 0.9662 100 3.1360
12.8837 1.9275 200 2.9369
12.1693 2.8889 300 2.7978
11.6903 3.8502 400 2.7166
11.3443 4.8116 500 2.6688
11.1585 5.7729 600 2.6340
10.9682 6.7343 700 2.6140
10.9556 7.6957 800 2.5960
10.7355 8.6570 900 2.5882
10.6794 9.6184 1000 2.5827

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
236
Safetensors
Model size
271M params
Tensor type
F32
·
Inference Examples
Inference API (serverless) does not yet support model repos that contain custom code.

Model tree for aipib/Florence-2-FT-JP-OCR

Finetuned
(16)
this model

Dataset used to train aipib/Florence-2-FT-JP-OCR