Anxiety_binary / README.md
ajrayman's picture
Training in progress, epoch 1
47d2dbd verified
|
raw
history blame
1.72 kB
metadata
library_name: transformers
license: mit
base_model: roberta-large
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: PuritySanctity_binary
    results: []

PuritySanctity_binary

This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6174
  • Accuracy: 0.6904
  • Precision: 0.6805
  • Recall: 0.7273
  • F1: 0.7031

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 123 0.6316 0.6548 0.6182 0.8242 0.7065
No log 2.0 246 0.6060 0.6843 0.6782 0.7111 0.6943
No log 3.0 369 0.6174 0.6904 0.6805 0.7273 0.7031

Framework versions

  • Transformers 4.44.1
  • Pytorch 1.11.0
  • Datasets 2.12.0
  • Tokenizers 0.19.1