Uploaded model

  • Developed by: ak0327
  • License: apache-2.0
  • Finetuned from model : llm-jp/llm-jp-3-13b

This llama model was trained 2x faster with Unsloth and Huggingface's TRL library.

How to use


def load_model(model_name):
  # QLoRA config
  bnb_config = BitsAndBytesConfig(
      load_in_4bit=True,
      bnb_4bit_quant_type="nf4",
      bnb_4bit_compute_dtype=torch.bfloat16,
      bnb_4bit_use_double_quant=False,
  )

  # Load model
  model = AutoModelForCausalLM.from_pretrained(
      model_name,
      quantization_config=bnb_config,
      device_map="auto",
      token=HF_TOKEN
  )

  # Load tokenizer
  tokenizer = AutoTokenizer.from_pretrained(
      model_name,
      trust_remote_code=True,
      token=HF_TOKEN
  )
  return model, tokenizer


def inference(datasets, model, tokenizer):
  _results = []
  for data in tqdm(datasets):
      input = data["input"]

      prompt = f"""### 指示
      {input}
      ### 回答:
      """

      encoded_input = tokenizer.encode_plus(
          prompt,
          add_special_tokens=False,
          return_tensors="pt",
          padding=True,
          truncation=True,
      ).to(model.device)

      tokenized_input = encoded_input["input_ids"]
      attention_mask = encoded_input["attention_mask"]

      with torch.no_grad():
          outputs = model.generate(
              tokenized_input,
              attention_mask=attention_mask,
              max_new_tokens=100,
              do_sample=False,
              repetition_penalty=1.2,
              pad_token_id=tokenizer.pad_token_id
          )[0]

      output = tokenizer.decode(
          outputs[tokenized_input.size(1):],
          skip_special_tokens=True
          )

      _results.append({
          "task_id": data["task_id"],
          "input": input,
          "output": output
      })
  return _results


model_name = "ak0327/llm-jp-3-13b-ft-5"

model, tokenizer = load_model(model_name)
datasets = load_test_datasets()  # your datasets
results = inference(model_name, datasets, model, tokenizer)
Downloads last month
6
Safetensors
Model size
13.7B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for ak0327/llm-jp-3-13b-ft-5

Finetuned
(1139)
this model