reddit_summarization_model

This model is a fine-tuned version of facebook/bart-large-xsum on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9410
  • Rouge1: 0.4169
  • Rouge2: 0.163
  • Rougel: 0.276
  • Rougelsum: 0.3001
  • Gen Len: 61.6276

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 3
  • eval_batch_size: 3
  • seed: 42
  • gradient_accumulation_steps: 3
  • total_train_batch_size: 9
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
1.9905 1.0 972 1.8412 0.412 0.1593 0.2725 0.2965 61.7025
1.5293 2.0 1944 1.8022 0.4162 0.1634 0.2766 0.2998 61.6673
1.2934 3.0 2916 1.8352 0.4194 0.1641 0.2789 0.3019 61.548
1.1481 4.0 3888 1.8898 0.415 0.1623 0.2753 0.2985 61.5825
1.04 5.0 4860 1.9410 0.4169 0.163 0.276 0.3001 61.6276

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
12
Safetensors
Model size
406M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for alexdg19/reddit_summarization_model

Finetuned
(50)
this model