|
--- |
|
license: apache-2.0 |
|
tags: |
|
- scene text erase |
|
- poster text erase |
|
--- |
|
|
|
# Self-supervised Text Erasing Model (STE) |
|
Paper: [https://arxiv.org/abs/2204.12743](https://arxiv.org/abs/2204.12743)<br/> |
|
Project Page: [https://github.com/alimama-creative/Self-supervised-Text-Erasing](https://github.com/alimama-creative/Self-supervised-Text-Erasing)<br/> |
|
|
|
## Description |
|
The checkpoints are trained from the posterErase dataset. There are two versions with different training mechanism. |
|
|
|
Self-supervised Text Trasing (ste_best_net_G.pth): To use it, please download from this page, and put it under './checkpoints/erasenet/ste/best_net_G.pth' |
|
|
|
Finetuning after STE (ft_best_net_G.pth): To use it, please download from this page, and put it under './checkpoints/erasenet/ste/best_net_G.pth' |
|
|
|
## Usage |
|
First, download the github project and install the python package. |
|
```bash |
|
git clone https://github.com/alimama-creative/Self-supervised-Text-Erasing.git |
|
pip install -r requirements.txt |
|
``` |
|
|
|
Then, follow the command line provied in the github to run the inference code. |
|
|
|
```bash |
|
python test.py --dataset_mode items --dataroot ./examples/poster --model erasenet --name ft --which_epoch best # inferece with the ste model on poster |
|
|
|
python test.py --dataset_mode items --dataroot ./examples/poster --model erasenet --name ste --which_epoch best # inferece with the finetuned model model on poster |
|
|
|
``` |
|
|
|
|