alinerodrigues's picture
update model card README.md
247ed9e
metadata
license: apache-2.0
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-large-xlsr-coraa-exp-2
    results: []

wav2vec2-large-xlsr-coraa-exp-2

This model is a fine-tuned version of Edresson/wav2vec2-large-xlsr-coraa-portuguese on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 9.0840
  • Wer: 1.0
  • Cer: 0.9619

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 150
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Cer
38.902 1.0 14 30.9943 0.9994 0.9583
38.902 2.0 28 13.1446 1.0 0.9619
38.902 3.0 42 10.9579 1.0 0.9619
38.902 4.0 56 10.3935 1.0 0.9619
38.902 5.0 70 9.9203 1.0 0.9619
38.902 6.0 84 9.4185 1.0 0.9619
38.902 7.0 98 9.0840 1.0 0.9619
11.1539 8.0 112 9.0912 0.9994 0.9610
11.1539 9.0 126 9.1239 0.9850 0.9137
11.1539 10.0 140 9.1313 0.9809 0.9035
11.1539 11.0 154 9.2100 0.9868 0.8705
11.1539 12.0 168 9.1043 0.9829 0.8711
11.1539 13.0 182 9.4617 0.9793 0.9264
11.1539 14.0 196 9.6228 0.9783 0.9235
3.9522 15.0 210 9.3262 0.9774 0.8737
3.9522 16.0 224 9.4366 0.9764 0.8773
3.9522 17.0 238 9.7235 0.9758 0.9005
3.9522 18.0 252 9.9012 0.9750 0.8971
3.9522 19.0 266 9.7519 0.9846 0.8567
3.9522 20.0 280 9.8620 0.9764 0.8976
3.9522 21.0 294 9.8945 0.9783 0.8681
3.3723 22.0 308 9.9917 0.9748 0.8706
3.3723 23.0 322 10.0580 0.9801 0.8577
3.3723 24.0 336 10.1575 0.9764 0.8708
3.3723 25.0 350 10.1982 0.9819 0.8555
3.3723 26.0 364 10.4087 0.9791 0.9087
3.3723 27.0 378 10.5064 0.9799 0.8902

Framework versions

  • Transformers 4.28.0
  • Pytorch 2.4.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.13.3