whisper-small-tr / README.md
aliosmanbey's picture
Upload tokenizer
18677e5 verified
metadata
base_model: openai/whisper-small
datasets:
  - common_voice_17_0
library_name: transformers
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: whisper-small-tr
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: common_voice_17_0
          type: common_voice_17_0
          config: tr
          split: test
          args: tr
        metrics:
          - type: wer
            value: 20.088563399472026
            name: Wer

whisper-small-tr

This model is a fine-tuned version of openai/whisper-small on the common_voice_17_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2316
  • Wer: 20.0886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 5000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2284 0.3447 1000 0.2814 23.9819
0.1906 0.6894 2000 0.2606 22.5598
0.0945 1.0341 3000 0.2472 21.1990
0.0871 1.3788 4000 0.2405 20.6744
0.0823 1.7235 5000 0.2316 20.0886

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.0+cu124
  • Datasets 3.0.0
  • Tokenizers 0.19.1