Personal_4B-GGUF / README.old.md
altomek's picture
quants upload
9089148 verified
metadata
library_name: transformers
license: other
base_model: FourOhFour/Crispy_Crab_4B
tags:
  - axolotl
  - generated_from_trainer
model-index:
  - name: personal4B
    results: []

Built with Axolotl

See axolotl config

axolotl version: 0.4.1

base_model: FourOhFour/Crispy_Crab_4B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

hub_model_id: jeiku/personal4B
hub_strategy: "all_checkpoints"
push_dataset_to_hub:
hf_use_auth_token: true

datasets:
  - path: jeiku/Hypno_ChatML
    type: sharegpt
    conversation: chatml
  - path: jeiku/Soul_ChatML
    type: sharegpt
    conversation: chatml
  - path: jeiku/Theory_Chat
    type: sharegpt
    conversation: chatml
  - path: jeiku/Writing
    type: completion
    field: text

chat_template: chatml

shuffle_merged_datasets: true
val_set_size: 0.0025
output_dir: ./outputs/out

adapter:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:

sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true

wandb_project: EXP4B
wandb_entity:
wandb_watch:
wandb_name: EXP4B
wandb_log_model:

gradient_accumulation_steps: 12
micro_batch_size: 2
num_epochs: 4
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.00001
weight_decay: 0.05

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: 
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_ratio: 0.1
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1

debug:
deepspeed:
fsdp:
fsdp_config:

special_tokens:
  pad_token: <|finetune_right_pad_id|>

personal4B

This model is a fine-tuned version of FourOhFour/Crispy_Crab_4B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.9273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 12
  • total_train_batch_size: 48
  • total_eval_batch_size: 4
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss
2.1634 0.8571 1 2.0454
2.0907 1.7143 2 1.9455
1.9539 2.5714 3 1.9296
1.9493 3.4286 4 1.9273

Framework versions

  • Transformers 4.46.0.dev0
  • Pytorch 2.4.1+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1