bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0741
  • Precision: 0.9341
  • Recall: 0.9520
  • F1: 0.9430
  • Accuracy: 0.9867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0775 1.0 1756 0.0694 0.8912 0.9273 0.9089 0.9817
0.0377 2.0 3512 0.0707 0.9245 0.9445 0.9344 0.9850
0.0243 3.0 5268 0.0671 0.9281 0.9465 0.9372 0.9855
0.0145 4.0 7024 0.0734 0.9353 0.9507 0.9429 0.9859
0.006 5.0 8780 0.0741 0.9341 0.9520 0.9430 0.9867

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1

How to use and it's democase

from transformers import pipeline

model_checkpoint = "amannagrawall002/bert-finetuned-ner" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" )

print(token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn."))

[{'entity_group': 'PER', 'score': 0.9997023, 'word': 'Sylvain', 'start': 11, 'end': 18}, {'entity_group': 'ORG', 'score': 0.995275, 'word': 'Hugging Face', 'start': 33, 'end': 45}, {'entity_group': 'LOC', 'score': 0.9987465, 'word': 'Brooklyn', 'start': 49, 'end': 57}]

Downloads last month
9
Safetensors
Model size
108M params
Tensor type
F32
·
Inference API
Unable to determine this model's library. Check the docs .

Model tree for amannagrawall002/bert-finetuned-ner

Finetuned
(2015)
this model

Dataset used to train amannagrawall002/bert-finetuned-ner

Evaluation results