bert-finetuned-ner / README.md
amannagrawall002's picture
Update README.md
034dda3 verified
metadata
license: apache-2.0
base_model: bert-base-cased
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-finetuned-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: conll2003
          type: conll2003
          config: conll2003
          split: validation
          args: conll2003
        metrics:
          - name: Precision
            type: precision
            value: 0.9341149273447821
          - name: Recall
            type: recall
            value: 0.9520363513968361
          - name: F1
            type: f1
            value: 0.9429904984164028
          - name: Accuracy
            type: accuracy
            value: 0.9866515570730559

bert-finetuned-ner

This model is a fine-tuned version of bert-base-cased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0741
  • Precision: 0.9341
  • Recall: 0.9520
  • F1: 0.9430
  • Accuracy: 0.9867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0775 1.0 1756 0.0694 0.8912 0.9273 0.9089 0.9817
0.0377 2.0 3512 0.0707 0.9245 0.9445 0.9344 0.9850
0.0243 3.0 5268 0.0671 0.9281 0.9465 0.9372 0.9855
0.0145 4.0 7024 0.0734 0.9353 0.9507 0.9429 0.9859
0.006 5.0 8780 0.0741 0.9341 0.9520 0.9430 0.9867

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1

How to use and it's democase

from transformers import pipeline

model_checkpoint = "amannagrawall002/bert-finetuned-ner" token_classifier = pipeline( "token-classification", model=model_checkpoint, aggregation_strategy="simple" )

print(token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn."))

[{'entity_group': 'PER', 'score': 0.9997023, 'word': 'Sylvain', 'start': 11, 'end': 18}, {'entity_group': 'ORG', 'score': 0.995275, 'word': 'Hugging Face', 'start': 33, 'end': 45}, {'entity_group': 'LOC', 'score': 0.9987465, 'word': 'Brooklyn', 'start': 49, 'end': 57}]