|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- conll2003 |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: bert-finetuned-ner |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: conll2003 |
|
type: conll2003 |
|
config: conll2003 |
|
split: validation |
|
args: conll2003 |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9341149273447821 |
|
- name: Recall |
|
type: recall |
|
value: 0.9520363513968361 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9429904984164028 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9866515570730559 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bert-finetuned-ner |
|
|
|
This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on the conll2003 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0741 |
|
- Precision: 0.9341 |
|
- Recall: 0.9520 |
|
- F1: 0.9430 |
|
- Accuracy: 0.9867 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.0775 | 1.0 | 1756 | 0.0694 | 0.8912 | 0.9273 | 0.9089 | 0.9817 | |
|
| 0.0377 | 2.0 | 3512 | 0.0707 | 0.9245 | 0.9445 | 0.9344 | 0.9850 | |
|
| 0.0243 | 3.0 | 5268 | 0.0671 | 0.9281 | 0.9465 | 0.9372 | 0.9855 | |
|
| 0.0145 | 4.0 | 7024 | 0.0734 | 0.9353 | 0.9507 | 0.9429 | 0.9859 | |
|
| 0.006 | 5.0 | 8780 | 0.0741 | 0.9341 | 0.9520 | 0.9430 | 0.9867 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|
|
### How to use and it's democase |
|
|
|
from transformers import pipeline |
|
|
|
model_checkpoint = "amannagrawall002/bert-finetuned-ner" |
|
token_classifier = pipeline( |
|
"token-classification", model=model_checkpoint, aggregation_strategy="simple" |
|
) |
|
|
|
print(token_classifier("My name is Sylvain and I work at Hugging Face in Brooklyn.")) |
|
# [{'entity_group': 'PER', 'score': 0.9997023, 'word': 'Sylvain', 'start': 11, 'end': 18}, {'entity_group': 'ORG', 'score': 0.995275, 'word': 'Hugging Face', 'start': 33, 'end': 45}, {'entity_group': 'LOC', 'score': 0.9987465, 'word': 'Brooklyn', 'start': 49, 'end': 57}] |
|
|
|
|