library_name: transformers
tags:
- text-generation-inference
- sft
- trl
- 4-bit precision
- bitsandbytes
- LoRA
- Fine-Tuning with LoRA
- LLM
- NT-GenAI
- lahnmah
datasets:
- Thaweewat/thai-med-pack
language:
- th
base_model:
- openthaigpt/openthaigpt1.5-7b-instruct
pipeline_tag: text-generation
Model Card for openthaigpt1.5-7b-medical-tuned
This model is fine-tuned from openthaigpt1.5-7b-instruct
using Supervised Fine-Tuning (SFT) on the Thaweewat/thai-med-pack
dataset. The model is designed for medical question-answering tasks in Thai, specializing in providing accurate and contextual answers based on medical information.
Model Details
Model Description
This model was fine-tuned using Supervised Fine-Tuning (SFT) to optimize it for medical question answering in Thai. The base model is openthaigpt1.5-7b-instruct
, and it has been enhanced with domain-specific knowledge using the Thaweewat/thai-med-pack
dataset.
- Developed by: Amornpan Phornchaicharoen
- Fine-tuned by: Amornpan Phornchaicharoen
- Model type: Causal Language Model (AutoModelForCausalLM)
- Language(s): Thai
- License: Amornpan Phornchaicharoen
- Fine-tuned from model:
openthaigpt1.5-7b-instruct
- Dataset used for fine-tuning:
Thaweewat/thai-med-pack
Model Sources
- Repository: [Link to your Hugging Face model repository]
- Base Model: [Link to
openthaigpt1.5-7b-instruct
repository] - Dataset: [Link to
Thaweewat/thai-med-pack
repository]
Uses
Direct Use
The model can be directly used for generating medical responses in Thai. It has been optimized for:
- Medical question-answering
- Providing clinical information
- Health-related dialogue generation
Downstream Use
This model can be used as a foundational model for medical assistance systems, chatbots, and applications related to healthcare, specifically in the Thai language.
Out-of-Scope Use
- This model should not be used for real-time diagnosis or emergency medical scenarios.
- Avoid using it for critical clinical decisions without human oversight, as the model is not intended to replace professional medical advice.
Bias, Risks, and Limitations
Bias
- The model might reflect biases present in the dataset, particularly when addressing underrepresented medical conditions or topics.
Risks
- Responses may contain inaccuracies due to the inherent limitations of the model and the dataset used for fine-tuning.
- This model should not be used as the sole source of medical advice.
Limitations
- Limited to the medical domain.
- The model is sensitive to prompts and may generate off-topic responses for non-medical queries.
How to Get Started with the Model
Here’s how to load and use the model for generating medical responses in Thai:
from transformers import AutoModelForCausalLM, AutoTokenizer
# Load the fine-tuned model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("amornpan/openthaigpt-MedChatModelv11")
model = AutoModelForCausalLM.from_pretrained("amornpan/openthaigpt-MedChatModelv11")
# Input your medical question or prompt in Thai
input_text = "ใส่คำถามทางการแพทย์ที่นี่"
inputs = tokenizer(input_text, return_tensors="pt")
# Generate the output with a higher max length or max new tokens
output = model.generate(**inputs, max_new_tokens=100, do_sample=True, temperature=0.7)
# Decode and print the generated response, skipping special tokens
print(tokenizer.decode(output[0], skip_special_tokens=True))
โปรดอธิบายลักษณะช่องปากที่เป็นมะเร็งในระยะเริ่มต้น
ช่องปากมะเร็งในระยะเริ่มต้น อาจไม่มีอาการชัดเจน แต่ผู้คนบางกลุ่มอาจสังเกตเห็นอาการต่อไปนี้:
- มีการกัดหรือกระแทกบริเวณช่องปากโดยไม่มีสาเหตุ
- มีจุด ฝี เมล็ด หรือความไม่เท่าเทียมภายในช่องปากที่ไม่หายวื้อ
- ปวดหรือเจ็บบริเวณช่องปาก
- เปลี่ยนแปลงสีของเนื้อเยื่อในช่องปาก (อาจเป็นสีขาว หรือ黑马)
- มีตุ่มที่ไม่หาย ภายในช่องปาก
- มีความลำบากในการกิน มี
More Information
amornpan@gmail.com