whisper_largev2_jp / README.md
anhphuong's picture
End of training
7becd6d verified
metadata
language:
  - vi
base_model: openai/whisper-largev2-ja-v2
tags:
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Whisper Large V2 Ja - Anh Phuong
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Google fleurs
          type: google/fleurs
          config: ja_jp
          split: None
          args: 'config: hi, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 58.247168882323976

Whisper Large V2 Ja - Anh Phuong

This model is a fine-tuned version of openai/whisper-largev2-ja-v2 on the Google fleurs dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2626
  • Wer: 58.2472

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 6000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.004 6.25 1000 0.2030 61.0044
0.0022 12.5 2000 0.2081 60.6105
0.0002 18.75 3000 0.2401 58.7888
0.0001 25.0 4000 0.2531 58.6411
0.0001 31.25 5000 0.2598 58.2472
0.0001 37.5 6000 0.2626 58.2472

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1