cllm-0.0.2
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.5767
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8419 | 0.0214 | 500 | 4.7291 |
3.891 | 0.0429 | 1000 | 3.8792 |
3.5798 | 0.0643 | 1500 | 3.5656 |
3.3861 | 0.0858 | 2000 | 3.4057 |
3.2754 | 0.1072 | 2500 | 3.2925 |
3.2039 | 0.1286 | 3000 | 3.2109 |
3.1475 | 0.1501 | 3500 | 3.1513 |
3.0936 | 0.1715 | 4000 | 3.0991 |
3.0483 | 0.1930 | 4500 | 3.0603 |
3.0036 | 0.2144 | 5000 | 3.0180 |
2.9644 | 0.2358 | 5500 | 2.9900 |
2.9374 | 0.2573 | 6000 | 2.9599 |
2.901 | 0.2787 | 6500 | 2.9334 |
2.8968 | 0.3002 | 7000 | 2.9124 |
2.866 | 0.3216 | 7500 | 2.8889 |
2.8614 | 0.3430 | 8000 | 2.8672 |
2.8378 | 0.3645 | 8500 | 2.8489 |
2.8242 | 0.3859 | 9000 | 2.8290 |
2.7961 | 0.4074 | 9500 | 2.8133 |
2.769 | 0.4288 | 10000 | 2.7962 |
2.7619 | 0.4502 | 10500 | 2.7804 |
2.7527 | 0.4717 | 11000 | 2.7687 |
2.7457 | 0.4931 | 11500 | 2.7540 |
2.7119 | 0.5146 | 12000 | 2.7441 |
2.7089 | 0.5360 | 12500 | 2.7317 |
2.7236 | 0.5574 | 13000 | 2.7218 |
2.6984 | 0.5789 | 13500 | 2.7102 |
2.6791 | 0.6003 | 14000 | 2.6998 |
2.6764 | 0.6218 | 14500 | 2.6915 |
2.6663 | 0.6432 | 15000 | 2.6806 |
2.6424 | 0.6646 | 15500 | 2.6720 |
2.6384 | 0.6861 | 16000 | 2.6612 |
2.6343 | 0.7075 | 16500 | 2.6536 |
2.6303 | 0.7290 | 17000 | 2.6471 |
2.6115 | 0.7504 | 17500 | 2.6373 |
2.6125 | 0.7718 | 18000 | 2.6310 |
2.5983 | 0.7933 | 18500 | 2.6246 |
2.6043 | 0.8147 | 19000 | 2.6173 |
2.5876 | 0.8362 | 19500 | 2.6106 |
2.5824 | 0.8576 | 20000 | 2.6043 |
2.5802 | 0.8790 | 20500 | 2.5983 |
2.5772 | 0.9005 | 21000 | 2.5927 |
2.5584 | 0.9219 | 21500 | 2.5878 |
2.5652 | 0.9434 | 22000 | 2.5835 |
2.5593 | 0.9648 | 22500 | 2.5794 |
2.5547 | 0.9862 | 23000 | 2.5767 |
Framework versions
- Transformers 4.47.1
- Pytorch 2.1.0+cu118
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 26
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.