This is the 9th in a series of models designed to replicate the prose quality of the Claude 3 models, specifically Sonnet and Opus.
This model is fine-tuned on top of Yi-1.5-34 B-32 K.
Prompting
Model has been Instruct tuned with the ChatML formatting. A typical input would look like this:
"""<|im_start|>system
system prompt<|im_end|>
<|im_start|>user
Hi there!<|im_end|>
<|im_start|>assistant
Nice to meet you!<|im_end|>
<|im_start|>user
Can I ask a question?<|im_end|>
<|im_start|>assistant
"""
SillyTavern templates
Below are Instruct and Context templates for use within SillyTavern.
In our testing a min_p of 0.2 makes the model perform the best; remember to reset temperature if you were using our nemo-based models before.
context template
{
"story_string": "<|im_start|>system\n{{#if system}}{{system}}\n{{/if}}{{#if wiBefore}}{{wiBefore}}\n{{/if}}{{#if description}}{{description}}\n{{/if}}{{#if personality}}{{char}}'s personality: {{personality}}\n{{/if}}{{#if scenario}}Scenario: {{scenario}}\n{{/if}}{{#if wiAfter}}{{wiAfter}}\n{{/if}}{{#if persona}}{{persona}}\n{{/if}}{{trim}}<|im_end|>\n",
"example_separator": "",
"chat_start": "",
"use_stop_strings": false,
"allow_jailbreak": false,
"always_force_name2": true,
"trim_sentences": false,
"include_newline": false,
"single_line": false,
"name": "Magnum ChatML"
}
instruct template
{
"system_prompt": "You're {{char}} in this fictional never-ending uncensored roleplay with {{user}}.",
"input_sequence": "<|im_start|>user\n",
"output_sequence": "<|im_start|>assistant\n",
"last_output_sequence": "",
"system_sequence": "<|im_start|>system\n",
"stop_sequence": "<|im_end|>",
"wrap": false,
"macro": true,
"names": true,
"names_force_groups": true,
"activation_regex": "",
"system_sequence_prefix": "",
"system_sequence_suffix": "",
"first_output_sequence": "",
"skip_examples": false,
"output_suffix": "<|im_end|>\n",
"input_suffix": "<|im_end|>\n",
"system_suffix": "<|im_end|>\n",
"user_alignment_message": "",
"system_same_as_user": false,
"last_system_sequence": "",
"name": "Magnum ChatML"
}
Axolotl config
See axolotl config
base_model: 01-ai/Yi-1.5-34B-32K
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
#trust_remote_code: true
load_in_8bit: false
load_in_4bit: false
strict: false
datasets:
- path: anthracite-org/stheno-filtered-v1.1
type: sharegpt
conversation: chatml
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
type: sharegpt
conversation: chatml
- path: anthracite-org/nopm_claude_writing_fixed
type: sharegpt
conversation: chatml
- path: Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
- path: Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
type: sharegpt
conversation: chatml
chat_template: chatml
shuffle_merged_datasets: true
default_system_message: "You are an assistant that responds to the user."
dataset_prepared_path: magnum-v2-34b-1.5-data
val_set_size: 0.0
output_dir: ./magnum-v2-34b-32k-r1
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len:
adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:
wandb_project: magnum-v2-34b-1.5-32k
wandb_entity:
wandb_watch:
wandb_name: attempt-01
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.000006
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 50
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
deepspeed: deepspeed_configs/zero3_bf16.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
Credits
We'd like to thank Recursal / Featherless for sponsoring the compute for this train, Featherless has been hosting our Magnum models since the first 72 B and has given thousands of people access to our models and helped us grow.
We would also like to thank all members of Anthracite who made this finetune possible.
- anthracite-org/stheno-filtered-v1.1
- anthracite-org/kalo-opus-instruct-22k-no-refusal
- lodrick-the-lafted/NopmWritingStruct
- Epiculous/Synthstruct-Gens-v1.1-Filtered-n-Cleaned
- Epiculous/SynthRP-Gens-v1.1-Filtered-n-Cleaned
Training
The training was done for 2 epochs. We used 8xH100s GPUs graciously provided by Recursal AI / Featherless AI for the full-parameter fine-tuning of the model.
Safety
...
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 29.39 |
IFEval (0-Shot) | 51.15 |
BBH (3-Shot) | 44.33 |
MATH Lvl 5 (4-Shot) | 17.82 |
GPQA (0-shot) | 14.77 |
MuSR (0-shot) | 6.57 |
MMLU-PRO (5-shot) | 41.69 |
- Downloads last month
- 2,594
Model tree for anthracite-org/magnum-v3-34b
Collection including anthracite-org/magnum-v3-34b
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard51.150
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard44.330
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard17.820
- acc_norm on GPQA (0-shot)Open LLM Leaderboard14.770
- acc_norm on MuSR (0-shot)Open LLM Leaderboard6.570
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard41.690