Mistral-7B-Instruct-v0.2-expanded
This method employs mergekit's passthrough method to expand blocks within the "mistralai/Mistral-7B-Instruct-v0.2" model. For every 5th layer,
a new layer is added, with the o_proj
and down_proj
parameters of these added layers initialized to zero, mirroring the approach used in LLaMA Pro.
It's important to note that this configuration has not undergone fine-tuning. So this won't work. Therefore, when fine-tuning, ensure that only every 5th layer is trainable,while all other layers remain frozen.
🧩 Configuration
slices:
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [0, 4]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [3, 4]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [4, 8]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [7, 8]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [8, 12]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [11, 12]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [12, 16]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [15, 16]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [16, 20]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [19, 20]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [20, 24]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [23, 24]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [24, 28]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [27, 28]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [28, 32]
- sources:
- model: mistralai/Mistral-7B-Instruct-v0.2
layer_range: [31, 32]
parameters:
scale:
- filter: o_proj
value: 0.0
- filter: down_proj
value: 0.0
- value: 1.0
merge_method: passthrough
dtype: bfloat16
Function to freeze layers
from transformers import AutoModelForCausalLM
def enable_grad_only_every_nth(model, n):
"""
This function configures the specified model to enable gradient calculations exclusively for every nth layer, starting
from the first layer (0-indexed), to accommodate newly added blocks for training. Concurrently, it freezes the gradients
for all other components of the model, including the embedding layers and the model's head. This setup is particularly
useful for fine-tuning processes where only a subset of layers are targeted for updates, ensuring efficient training and
adaptation of newly integrated layers while maintaining the pre-trained behavior of other model components.
"""
# Freeze embeddings.
for param in model.model.embed_tokens.parameters():
param.requires_grad = False
# Freeze lm_head.
for param in model.lm_head.parameters():
param.requires_grad = False
# Enable gradients for every nth layer
layers = model.model.layers # Access the ModuleList containing the layers
for index, layer in enumerate(layers):
if (index + 1) % n == 0: # Enables gradients for every nth layer, starting from the layer after the 0th
for param in layer.parameters():
param.requires_grad = True
else:
for param in layer.parameters():
param.requires_grad = False
model = transformers.AutoModelForCausalLM.from_pretrained(
"arcee-ai/Mistral-7B-Instruct-v0.2-expanded"
)
# Update layer gradients, specify the correct value for n based on your model's architecture
n =5
enable_grad_only_every_nth(model, n)
- Downloads last month
- 22
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.