Certainly! Here's a short README for using the pre-trained distilgpt2
model for chatting:
DistilGPT-2 Chatbot
This project demonstrates how to use the pre-trained distilgpt2
model from Hugging Face for creating a simple chatbot. It includes code for loading the model, generating responses, and running an interactive conversation loop.
Prerequisites
Ensure you have the following libraries installed:
pip install transformers torch
Usage
Load the Pre-trained Model and Tokenizer
from transformers import GPT2LMHeadModel, GPT2Tokenizer model_name = "distilgpt2" model = GPT2LMHeadModel.from_pretrained(model_name) tokenizer = GPT2Tokenizer.from_pretrained(model_name)
Generate a Response
Use the following function to generate a response based on user input:
def generate_response(prompt, max_length=100): input_ids = tokenizer.encode(prompt, return_tensors='pt') output = model.generate( input_ids, max_length=max_length, pad_token_id=tokenizer.eos_token_id, no_repeat_ngram_size=2, num_return_sequences=1, temperature=0.7, top_p=0.9, top_k=50 ) response = tokenizer.decode(output[0], skip_special_tokens=True) return response
Interactive Conversation Loop
Run the following code to start a chat session:
while True: user_input = input("You: ") prompt = f"<user> {user_input}<AI>" response = generate_response(prompt) print(f"AI: {response}") if user_input.lower() in ["exit", "quit"]: break
Configuration
- Temperature: Controls randomness. Lower values are more deterministic.
- Top-p and top-k: Limit word selection for balanced diversity and coherence.
- Max_length: Limits the length of the response.
- Downloads last month
- 5
Inference API (serverless) does not yet support torch, transformers models for this pipeline type.