metadata
base_model: google-bert/bert-base-uncased
datasets:
- sentence-transformers/stsb
language:
- en
library_name: sentence-transformers
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:20127
- loss:CosineSimilarityLoss
widget:
- source_sentence: The man talked to a girl over the internet camera.
sentences:
- A group of elderly people pose around a dining table.
- A teenager talks to a girl over a webcam.
- There is no 'still' that is not relative to some other object.
- source_sentence: A woman is writing something.
sentences:
- Two eagles are perched on a branch.
- >-
It refers to the maximum f-stop (which is defined as the ratio of focal
length to effective aperture diameter).
- A woman is chopping green onions.
- source_sentence: The player shoots the winning points.
sentences:
- Minimum wage laws hurt the least skilled, least productive the most.
- The basketball player is about to score points for his team.
- Sheep are grazing in the field in front of a line of trees.
- source_sentence: >-
Stars form in star-formation regions, which itself develop from molecular
clouds.
sentences:
- >-
Although I believe Searle is mistaken, I don't think you have found the
problem.
- >-
It may be possible for a solar system like ours to exist outside of a
galaxy.
- >-
A blond-haired child performing on the trumpet in front of a house while
his younger brother watches.
- source_sentence: >-
While Queen may refer to both Queen regent (sovereign) or Queen consort,
the King has always been the sovereign.
sentences:
- At first, I thought this is a bit of a tricky question.
- A man sitting on the floor in a room is strumming a guitar.
- >-
There is a very good reason not to refer to the Queen's spouse as "King"
- because they aren't the King.
model-index:
- name: SentenceTransformer based on google-bert/bert-base-uncased
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts test
type: sts-test
metrics:
- type: pearson_cosine
value: 0.8704036241540303
name: Pearson Cosine
- type: spearman_cosine
value: 0.8723063947160014
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8240304398880643
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8326280427400794
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.824332157368767
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8327621115149644
name: Spearman Euclidean
- type: pearson_dot
value: 0.7561120117358238
name: Pearson Dot
- type: spearman_dot
value: 0.7732899193523305
name: Spearman Dot
- type: pearson_max
value: 0.8704036241540303
name: Pearson Max
- type: spearman_max
value: 0.8723063947160014
name: Spearman Max
- type: pearson_cosine
value: 0.8341388917194029
name: Pearson Cosine
- type: spearman_cosine
value: 0.8312253997736475
name: Spearman Cosine
- type: pearson_manhattan
value: 0.8121299512156789
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.8102823785744042
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.8124379587910084
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.8106160221464417
name: Spearman Euclidean
- type: pearson_dot
value: 0.6947485972044003
name: Pearson Dot
- type: spearman_dot
value: 0.6858002756760537
name: Spearman Dot
- type: pearson_max
value: 0.8341388917194029
name: Pearson Max
- type: spearman_max
value: 0.8312253997736475
name: Spearman Max
SentenceTransformer based on google-bert/bert-base-uncased
This is a sentence-transformers model finetuned from google-bert/bert-base-uncased on the sentence-transformers/stsb dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: google-bert/bert-base-uncased
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("armaniii/bert-base-uncased-augmentation-indomain-bm25-sts")
# Run inference
sentences = [
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
'A man sitting on the floor in a room is strumming a guitar.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8704 |
spearman_cosine | 0.8723 |
pearson_manhattan | 0.824 |
spearman_manhattan | 0.8326 |
pearson_euclidean | 0.8243 |
spearman_euclidean | 0.8328 |
pearson_dot | 0.7561 |
spearman_dot | 0.7733 |
pearson_max | 0.8704 |
spearman_max | 0.8723 |
Semantic Similarity
- Dataset:
sts-test
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.8341 |
spearman_cosine | 0.8312 |
pearson_manhattan | 0.8121 |
spearman_manhattan | 0.8103 |
pearson_euclidean | 0.8124 |
spearman_euclidean | 0.8106 |
pearson_dot | 0.6947 |
spearman_dot | 0.6858 |
pearson_max | 0.8341 |
spearman_max | 0.8312 |
Training Details
Training Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb
- Size: 20,127 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 10.0 tokens
- max: 28 tokens
- min: 5 tokens
- mean: 9.95 tokens
- max: 25 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
sentence-transformers/stsb
- Dataset: sentence-transformers/stsb
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 5 tokens
- mean: 15.1 tokens
- max: 45 tokens
- min: 6 tokens
- mean: 15.11 tokens
- max: 53 tokens
- min: 0.0
- mean: 0.47
- max: 1.0
- Samples:
sentence1 sentence2 score A man with a hard hat is dancing.
A man wearing a hard hat is dancing.
1.0
A young child is riding a horse.
A child is riding a horse.
0.95
A man is feeding a mouse to a snake.
The man is feeding a mouse to the snake.
1.0
- Loss:
CosineSimilarityLoss
with these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | sts-test_spearman_cosine |
---|---|---|---|---|
0.0795 | 100 | 0.0526 | 0.0390 | 0.8215 |
0.1590 | 200 | 0.0218 | 0.0335 | 0.8415 |
0.2385 | 300 | 0.0186 | 0.0310 | 0.8561 |
0.3180 | 400 | 0.0166 | 0.0341 | 0.8479 |
0.3975 | 500 | 0.0176 | 0.0313 | 0.8503 |
0.4769 | 600 | 0.0155 | 0.0281 | 0.8652 |
0.5564 | 700 | 0.0148 | 0.0270 | 0.8656 |
0.6359 | 800 | 0.014 | 0.0277 | 0.8669 |
0.7154 | 900 | 0.0149 | 0.0286 | 0.8694 |
0.7949 | 1000 | 0.0125 | 0.0281 | 0.8724 |
0.8744 | 1100 | 0.013 | 0.0285 | 0.8694 |
0.9539 | 1200 | 0.0127 | 0.0269 | 0.8723 |
1.0 | 1258 | - | - | 0.8312 |
Framework Versions
- Python: 3.9.2
- Sentence Transformers: 3.0.1
- Transformers: 4.43.1
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.2
- Datasets: 2.14.7
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}