asadfgglie's picture
Update README.md
577290c verified
metadata
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
tags:
  - generated_from_trainer
metrics:
  - accuracy
model-index:
  - name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7
    results: []
datasets:
  - asadfgglie/nli-zh-tw-all
language:
  - zh
pipeline_tag: zero-shot-classification

mDeBERTa-v3-base-xnli-multilingual-zeroshot-v4.0-only-nli-downsample

This model use same dataset with asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0, but training set was downsampled as 80% size of non-nli dataset asadfgglie/BanBan_2024-10-17-facial_expressions-nli.

This model is a fine-tuned version of MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4486
  • F1 Macro: 0.8264
  • F1 Micro: 0.8274
  • Accuracy Balanced: 0.8270
  • Accuracy: 0.8274
  • Precision Macro: 0.8260
  • Recall Macro: 0.8270
  • Precision Micro: 0.8274
  • Recall Micro: 0.8274

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 128
  • seed: 20241201
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.06
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss F1 Macro F1 Micro Accuracy Balanced Accuracy Precision Macro Recall Macro Precision Micro Recall Micro
0.3242 1.69 200 0.4044 0.8308 0.8312 0.8322 0.8312 0.8306 0.8322 0.8312 0.8312

Eval results

Datasets asadfgglie/nli-zh-tw-all/test asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test eval_dataset test_dataset
eval_loss 0.445 1.142 0.429 0.449
eval_f1_macro 0.827 0.505 0.83 0.826
eval_f1_micro 0.828 0.55 0.831 0.827
eval_accuracy_balanced 0.828 0.548 0.831 0.827
eval_accuracy 0.828 0.55 0.831 0.827
eval_precision_macro 0.827 0.575 0.83 0.826
eval_recall_macro 0.828 0.548 0.831 0.827
eval_precision_micro 0.828 0.55 0.831 0.827
eval_recall_micro 0.828 0.55 0.831 0.827
eval_runtime 275.581 4.734 54.573 209.065
eval_samples_per_second 30.844 199.853 31.151 32.526
eval_steps_per_second 0.243 1.69 0.257 0.258
epoch 2.99 2.99 2.99 2.99
Size of dataset 8500 946 1700 6800

Framework versions

  • Transformers 4.33.3
  • Pytorch 2.5.1+cu121
  • Datasets 2.14.7
  • Tokenizers 0.13.3