|
--- |
|
base_model: MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: mDeBERTa-v3-base-xnli-multilingual-nli-2mil7 |
|
results: [] |
|
datasets: |
|
- asadfgglie/nli-zh-tw-all |
|
language: |
|
- zh |
|
pipeline_tag: zero-shot-classification |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# mDeBERTa-v3-base-xnli-multilingual-zeroshot-v4.0-only-nli-downsample |
|
|
|
This model use same dataset with [asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0](https://huggingface.co/asadfgglie/mDeBERTa-v3-base-xnli-multilingual-zeroshot-v1.0), but training set was downsampled as 80% size of non-nli dataset [asadfgglie/BanBan_2024-10-17-facial_expressions-nli](https://huggingface.co/datasets/asadfgglie/BanBan_2024-10-17-facial_expressions-nli). |
|
|
|
This model is a fine-tuned version of [MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7](https://huggingface.co/MoritzLaurer/mDeBERTa-v3-base-xnli-multilingual-nli-2mil7) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4486 |
|
- F1 Macro: 0.8264 |
|
- F1 Micro: 0.8274 |
|
- Accuracy Balanced: 0.8270 |
|
- Accuracy: 0.8274 |
|
- Precision Macro: 0.8260 |
|
- Recall Macro: 0.8270 |
|
- Precision Micro: 0.8274 |
|
- Recall Micro: 0.8274 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 128 |
|
- seed: 20241201 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.06 |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 Macro | F1 Micro | Accuracy Balanced | Accuracy | Precision Macro | Recall Macro | Precision Micro | Recall Micro | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:-----------------:|:--------:|:---------------:|:------------:|:---------------:|:------------:| |
|
| 0.3242 | 1.69 | 200 | 0.4044 | 0.8308 | 0.8312 | 0.8322 | 0.8312 | 0.8306 | 0.8322 | 0.8312 | 0.8312 | |
|
|
|
### Eval results |
|
|Datasets|asadfgglie/nli-zh-tw-all/test|asadfgglie/BanBan_2024-10-17-facial_expressions-nli/test|eval_dataset|test_dataset| |
|
| :---: | :---: | :---: | :---: | :---: | |
|
|eval_loss|0.445|1.142|0.429|0.449| |
|
|eval_f1_macro|0.827|0.505|0.83|0.826| |
|
|eval_f1_micro|0.828|0.55|0.831|0.827| |
|
|eval_accuracy_balanced|0.828|0.548|0.831|0.827| |
|
|eval_accuracy|0.828|0.55|0.831|0.827| |
|
|eval_precision_macro|0.827|0.575|0.83|0.826| |
|
|eval_recall_macro|0.828|0.548|0.831|0.827| |
|
|eval_precision_micro|0.828|0.55|0.831|0.827| |
|
|eval_recall_micro|0.828|0.55|0.831|0.827| |
|
|eval_runtime|275.581|4.734|54.573|209.065| |
|
|eval_samples_per_second|30.844|199.853|31.151|32.526| |
|
|eval_steps_per_second|0.243|1.69|0.257|0.258| |
|
|epoch|2.99|2.99|2.99|2.99| |
|
|Size of dataset|8500|946|1700|6800| |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.33.3 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 2.14.7 |
|
- Tokenizers 0.13.3 |