GRAG Logo

GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

This is a sentence-transformers model trained on this Dataset with roughly 300k Triple-Samples. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. It was merged with the Base-Model WhereIsAI/UAE-Large-V1 again to maintain performance on other languages again.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Evaluation MTEB-Tasks

Classification

  • AmazonCounterfactualClassification
  • AmazonReviewsClassification
  • MassiveIntentClassification
  • MassiveScenarioClassification
  • MTOPDomainClassification
  • MTOPIntentClassification

Pair Classification

  • FalseFriendsGermanEnglish
  • PawsXPairClassification

Retrieval

  • GermanQuAD-Retrieval
  • GermanDPR

STS (Semantic Textual Similarity)

  • GermanSTSBenchmark
TASK UAE GRAG-UAE Merged-UAE GRAG vs. UAE Merged vs. UAE
AmazonCounterfactualClassification 0.5650 0.5449 0.5401 -2.01% -2.48%
AmazonReviewsClassification 0.2738 0.2745 0.2782 0.08% 0.44%
FalseFriendsGermanEnglish 0.4808 0.4777 0.4703 -0.32% -1.05%
GermanQuAD-Retrieval 0.7811 0.8353 0.8628 5.42% 8.18%
GermanSTSBenchmark 0.6421 0.6568 0.6754 1.47% 3.33%
MassiveIntentClassification 0.5139 0.4884 0.4714 -2.55% -4.25%
MassiveScenarioClassification 0.6062 0.5837 0.6111 -2.25% 0.49%
GermanDPR 0.6750 0.7210 0.7507 4.60% 7.57%
MTOPDomainClassification 0.7625 0.7450 0.7686 -1.75% 0.61%
MTOPIntentClassification 0.4994 0.4516 0.4413 -4.77% -5.80%
PawsXPairClassification 0.5452 0.5077 0.5162 -3.76% -2.90%

Evaluation on GRAG-EMBEDDING-BENCHMARK

Accuracy is calculated by evaluating if the relevant context is the highest ranking embedding of the whole context array. See Eval-Dataset and Evaluation Code here

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("avemio-digital/UAE-Large-V1_Triples_Merged_with_base")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.2.1
  • Transformers: 4.44.2
  • PyTorch: 2.5.0+cu121
  • Accelerate: 0.34.2
  • Datasets: 2.19.0
  • Tokenizers: 0.19.1

Citation

@article{li2023angle,
  title={AnglE-optimized Text Embeddings},
  author={Li, Xianming and Li, Jing},
  journal={arXiv preprint arXiv:2309.12871},
  year={2023}
}
Downloads last month
4
Safetensors
Model size
335M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

Dataset used to train avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI

Collection including avemio/GRAG-UAE-LARGE-V1-TRIPLES-MERGED-HESSIAN-AI