avinasht's picture
Acc0.8607990012484394, F10.8614809399603419 , Augmented with bert-base-uncased.csv, finetuned on ProsusAI/finbert
f9e3386 verified
metadata
base_model: ProsusAI/finbert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: finbert_bert-base-uncased
    results: []

finbert_bert-base-uncased

This model is a fine-tuned version of ProsusAI/finbert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8116
  • Accuracy: 0.8752
  • F1: 0.8758
  • Precision: 0.8778
  • Recall: 0.8752

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.8465 1.0 91 0.7610 0.6817 0.6643 0.6806 0.6817
0.5154 2.0 182 0.4672 0.8066 0.8082 0.8203 0.8066
0.331 3.0 273 0.4259 0.8393 0.8396 0.8407 0.8393
0.2461 4.0 364 0.5386 0.8315 0.8311 0.8405 0.8315
0.163 5.0 455 0.5392 0.8518 0.8496 0.8554 0.8518
0.1193 6.0 546 0.5441 0.8565 0.8559 0.8590 0.8565
0.0935 7.0 637 0.6496 0.8253 0.8218 0.8306 0.8253
0.0536 8.0 728 0.5461 0.8612 0.8609 0.8609 0.8612
0.0809 9.0 819 0.6680 0.8362 0.8350 0.8394 0.8362
0.0986 10.0 910 0.6303 0.8596 0.8597 0.8645 0.8596
0.0765 11.0 1001 0.7653 0.8300 0.8310 0.8511 0.8300
0.0507 12.0 1092 0.5176 0.8690 0.8691 0.8701 0.8690
0.0633 13.0 1183 0.9141 0.8268 0.8261 0.8370 0.8268
0.0529 14.0 1274 0.7537 0.8549 0.8552 0.8621 0.8549
0.0418 15.0 1365 0.9200 0.8346 0.8342 0.8441 0.8346
0.0151 16.0 1456 0.8578 0.8565 0.8549 0.8622 0.8565
0.0154 17.0 1547 0.8116 0.8752 0.8758 0.8778 0.8752
0.0054 18.0 1638 0.8926 0.8736 0.8733 0.8751 0.8736
0.0259 19.0 1729 0.9026 0.8705 0.8705 0.8709 0.8705
0.0036 20.0 1820 0.9616 0.8721 0.8713 0.8716 0.8721
0.0012 21.0 1911 0.9985 0.8658 0.8656 0.8655 0.8658
0.002 22.0 2002 0.9833 0.8690 0.8689 0.8688 0.8690

Framework versions

  • Transformers 4.37.0
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.1