Edit model card

checkpoints-mistral-300M

This model is a fine-tuned version of None on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 2.205

Model description

More information needed

Training and evaluation data

***** train metrics *****

epoch = 13.91 train_loss = 2.205

***** eval metrics *****

epoch = 13.91 eval_loss = 2.4 perplexity = 11.0228

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 2
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 192
  • total_eval_batch_size: 12
  • optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 4
  • num_epochs: 6
  • mixed_precision_training: Native AMP

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.14.5
  • Tokenizers 0.14.1

Usage

from transformers import pipeline

pipe = pipeline("text-generation", model="ayousanz/japanese-mistral-0.3b-base")

from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer
import torch

MODEL_NAME = "ayousanz/japanese-mistral-0.3b-base"
torch.set_float32_matmul_precision('high')

DEVICE = "cuda"
if torch.cuda.is_available():
    print("cuda")
    DEVICE = "cuda"
else:
    print("cpu")
    DEVICE = "cpu"

tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,use_fast=False)
model = AutoModelForCausalLM.from_pretrained(
    MODEL_NAME,
    trust_remote_code=True,
).to(DEVICE)

prompt = "大規模言語モデルとは、"

inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device)
with torch.no_grad():

    outputs = model.generate(
        inputs["input_ids"],
        max_new_tokens=256,
        do_sample=True,
        early_stopping=False,
        top_p=0.95,
        top_k=50,
        temperature=0.9,
        no_repeat_ngram_size=2,
        num_beams=3
    )

outputs_txt = tokenizer.decode(outputs[0])
print(outputs_txt)
Downloads last month
21
Safetensors
Model size
355M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.