|
--- |
|
base_model: None |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: checkpoints-mistral-0.3b |
|
results: [] |
|
license: apache-2.0 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# checkpoints-mistral-300M |
|
|
|
This model is a fine-tuned version of [None](https://huggingface.co/None) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.205 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
***** train metrics ***** |
|
|
|
epoch = 13.91 |
|
train_loss = 2.205 |
|
|
|
***** eval metrics ***** |
|
|
|
epoch = 13.91 |
|
eval_loss = 2.4 |
|
perplexity = 11.0228 |
|
|
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- distributed_type: multi-GPU |
|
- num_devices: 2 |
|
- gradient_accumulation_steps: 16 |
|
- total_train_batch_size: 192 |
|
- total_eval_batch_size: 12 |
|
- optimizer: Adam with betas=(0.9,0.95) and epsilon=0.0001 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_steps: 4 |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|
|
## Usage |
|
|
|
```python |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="ayousanz/japanese-mistral-0.3b-base") |
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextStreamer |
|
import torch |
|
|
|
MODEL_NAME = "ayousanz/japanese-mistral-0.3b-base" |
|
torch.set_float32_matmul_precision('high') |
|
|
|
DEVICE = "cuda" |
|
if torch.cuda.is_available(): |
|
print("cuda") |
|
DEVICE = "cuda" |
|
else: |
|
print("cpu") |
|
DEVICE = "cpu" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME,use_fast=False) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
MODEL_NAME, |
|
trust_remote_code=True, |
|
).to(DEVICE) |
|
|
|
prompt = "大規模言語モデルとは、" |
|
|
|
inputs = tokenizer(prompt, add_special_tokens=False,return_tensors="pt").to(model.device) |
|
with torch.no_grad(): |
|
|
|
outputs = model.generate( |
|
inputs["input_ids"], |
|
max_new_tokens=256, |
|
do_sample=True, |
|
early_stopping=False, |
|
top_p=0.95, |
|
top_k=50, |
|
temperature=0.9, |
|
no_repeat_ngram_size=2, |
|
num_beams=3 |
|
) |
|
|
|
outputs_txt = tokenizer.decode(outputs[0]) |
|
print(outputs_txt) |
|
|
|
``` |