metadata
library_name: transformers
license: mit
base_model: belisards/congretimbau
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- recall
- precision
model-index:
- name: belisards/congretimbau
results: []
belisards/congretimbau
This model is a fine-tuned version of belisards/congretimbau on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1176
- Accuracy: 0.8027
- F1: 0.7358
- Recall: 0.7544
- Precision: 0.7236
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 5151
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 200
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision |
---|---|---|---|---|---|---|---|
0.3405 | 1.0 | 18 | 0.2083 | 0.7232 | 0.4751 | 0.5104 | 0.5393 |
0.1467 | 2.0 | 36 | 0.1258 | 0.4107 | 0.4105 | 0.5463 | 0.5486 |
0.1198 | 3.0 | 54 | 0.1127 | 0.6607 | 0.5988 | 0.6140 | 0.5964 |
0.107 | 4.0 | 72 | 0.0999 | 0.6696 | 0.6339 | 0.6762 | 0.6380 |
0.0987 | 5.0 | 90 | 0.0943 | 0.6339 | 0.6113 | 0.6745 | 0.6339 |
0.0911 | 6.0 | 108 | 0.0930 | 0.6875 | 0.6492 | 0.6882 | 0.6492 |
0.078 | 7.0 | 126 | 0.0953 | 0.7321 | 0.6883 | 0.7183 | 0.6805 |
0.0671 | 8.0 | 144 | 0.0934 | 0.7232 | 0.6850 | 0.7235 | 0.6798 |
0.0534 | 9.0 | 162 | 0.1065 | 0.8036 | 0.7441 | 0.7441 | 0.7441 |
0.0355 | 10.0 | 180 | 0.1363 | 0.8214 | 0.7724 | 0.7786 | 0.7670 |
0.0263 | 11.0 | 198 | 0.1411 | 0.8214 | 0.7724 | 0.7786 | 0.7670 |
0.013 | 12.0 | 216 | 0.2712 | 0.8214 | 0.7560 | 0.7449 | 0.7710 |
0.0074 | 13.0 | 234 | 0.3198 | 0.7946 | 0.7294 | 0.7268 | 0.7321 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0