posicao_tema / README.md
belisards's picture
kairos-posicao-bert-custom
2891a9b verified
metadata
library_name: transformers
license: mit
base_model: belisards/congretimbau
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - recall
  - precision
model-index:
  - name: belisards/congretimbau
    results: []

belisards/congretimbau

This model is a fine-tuned version of belisards/congretimbau on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1076
  • Accuracy: 0.8503
  • F1: 0.7896
  • Recall: 0.7959
  • Precision: 0.7839

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 5151
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 200
  • num_epochs: 18

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Recall Precision
0.1548 1.0 35 0.1456 0.7411 0.4571 0.5112 0.6227
0.1572 2.0 70 0.1354 0.7411 0.6588 0.6570 0.6607
0.1305 3.0 105 0.1212 0.7768 0.6402 0.6251 0.7194
0.1069 4.0 140 0.1155 0.8393 0.7857 0.7794 0.7930
0.0937 5.0 175 0.1216 0.8304 0.7764 0.7734 0.7798
0.0639 6.0 210 0.1257 0.8482 0.7899 0.7742 0.8125
0.0437 7.0 245 0.1610 0.8393 0.7614 0.7345 0.8195
0.0254 8.0 280 0.2101 0.8482 0.7842 0.7630 0.8197
0.0067 9.0 315 0.2555 0.8482 0.7899 0.7742 0.8125

Framework versions

  • Transformers 4.47.0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0