|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: belisards/congretimbau |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- recall |
|
- precision |
|
model-index: |
|
- name: belisards/congretimbau |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# belisards/congretimbau |
|
|
|
This model is a fine-tuned version of [belisards/congretimbau](https://huggingface.co/belisards/congretimbau) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1076 |
|
- Accuracy: 0.8503 |
|
- F1: 0.7896 |
|
- Recall: 0.7959 |
|
- Precision: 0.7839 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 5151 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 200 |
|
- num_epochs: 18 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| |
|
| 0.1548 | 1.0 | 35 | 0.1456 | 0.7411 | 0.4571 | 0.5112 | 0.6227 | |
|
| 0.1572 | 2.0 | 70 | 0.1354 | 0.7411 | 0.6588 | 0.6570 | 0.6607 | |
|
| 0.1305 | 3.0 | 105 | 0.1212 | 0.7768 | 0.6402 | 0.6251 | 0.7194 | |
|
| 0.1069 | 4.0 | 140 | 0.1155 | 0.8393 | 0.7857 | 0.7794 | 0.7930 | |
|
| 0.0937 | 5.0 | 175 | 0.1216 | 0.8304 | 0.7764 | 0.7734 | 0.7798 | |
|
| 0.0639 | 6.0 | 210 | 0.1257 | 0.8482 | 0.7899 | 0.7742 | 0.8125 | |
|
| 0.0437 | 7.0 | 245 | 0.1610 | 0.8393 | 0.7614 | 0.7345 | 0.8195 | |
|
| 0.0254 | 8.0 | 280 | 0.2101 | 0.8482 | 0.7842 | 0.7630 | 0.8197 | |
|
| 0.0067 | 9.0 | 315 | 0.2555 | 0.8482 | 0.7899 | 0.7742 | 0.8125 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.47.0 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.2.0 |
|
- Tokenizers 0.21.0 |
|
|