mamba2-370m / README.md
binh230's picture
End of training
d7173d6 verified
metadata
license: apache-2.0
base_model: state-spaces/mamba2-370m
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: mamba2-370m
    results: []

Visualize in Weights & Biases

mamba2-370m

This model is a fine-tuned version of state-spaces/mamba2-370m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1239
  • Accuracy: 0.9792
  • Precision: 0.9795
  • Recall: 0.9792
  • F1: 0.9793
  • Auroc: 0.9969

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1
  • label_smoothing_factor: 0.03

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1 Auroc
0.3764 0.1930 500 0.2099 0.9392 0.9385 0.9392 0.9375 0.9822
0.197 0.3861 1000 0.2205 0.9315 0.9462 0.9315 0.9344 0.9929
0.1748 0.5791 1500 0.1453 0.9690 0.9690 0.9690 0.9690 0.9942
0.1601 0.7721 2000 0.1352 0.9750 0.9756 0.9750 0.9752 0.9954
0.1542 0.9652 2500 0.2024 0.9428 0.9450 0.9428 0.9400 0.9935

Framework versions

  • Transformers 4.43.0.dev0
  • Pytorch 2.4.0+cu124
  • Datasets 2.19.1
  • Tokenizers 0.19.1