Self-Play Preference Optimization for Language Model Alignment (https://arxiv.org/abs/2405.00675)
Llama-3-Instruct-8B-SPPO-Iter3
This model was developed using Self-Play Preference Optimization at iteration 3, based on the meta-llama/Meta-Llama-3-8B-Instruct architecture as starting point. We utilized the prompt sets from the openbmb/UltraFeedback dataset, splited to 3 parts for 3 iterations by snorkelai/Snorkel-Mistral-PairRM-DPO-Dataset. All responses used are synthetic.
Links to Other Models
Model Description
- Model type: A 8B parameter GPT-like model fine-tuned on synthetic datasets.
- Language(s) (NLP): Primarily English
- License: Apache-2.0
- Finetuned from model: meta-llama/Meta-Llama-3-8B-Instruct
AlpacaEval Leaderboard Evaluation Results
Model | LC. Win Rate | Win Rate | Avg. Length |
---|---|---|---|
Llama-3-8B-SPPO Iter1 | 31.73 | 31.74 | 1962 |
Llama-3-8B-SPPO Iter2 | 35.15 | 35.98 | 2021 |
Llama-3-8B-SPPO Iter3 | 38.77 | 39.85 | 2066 |
Open LLM Leaderboard Evaluation Results
Results are reported by using lm-evaluation-harness v0.4.1
arc_challenge | truthfulqa_mc2 | winogrande | gsm8k | hellaswag | mmlu | average | |
---|---|---|---|---|---|---|---|
Llama-3-8B-SPPO Iter1 | 63.82 | 54.96 | 76.40 | 75.44 | 79.80 | 65.65 | 69.35 |
Llama-3-8B-SPPO Iter2 | 64.93 | 56.48 | 76.87 | 75.13 | 80.39 | 65.67 | 69.91 |
Llama-3-8B-SPPO Iter3 | 65.19 | 58.04 | 77.11 | 74.91 | 80.86 | 65.60 | 70.29 |
Open LLM Leaderboard 2 Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 23.68 |
IFEval (0-Shot) | 68.28 |
BBH (3-Shot) | 29.74 |
MATH Lvl 5 (4-Shot) | 7.33 |
GPQA (0-shot) | 2.01 |
MuSR (0-shot) | 3.09 |
MMLU-PRO (5-shot) | 29.38 |
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-07
- eta: 1000
- per_device_train_batch_size: 8
- gradient_accumulation_steps: 1
- seed: 42
- distributed_type: deepspeed_zero3
- num_devices: 8
- optimizer: RMSProp
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_train_epochs: 6.0 (stop at epoch=1.0)
Citation
@misc{wu2024self,
title={Self-Play Preference Optimization for Language Model Alignment},
author={Wu, Yue and Sun, Zhiqing and Yuan, Huizhuo and Ji, Kaixuan and Yang, Yiming and Gu, Quanquan},
year={2024},
eprint={2405.00675},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 3
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train blockblockblock/Llama-3-Instruct-8B-SPPO-Iter3-bpw5-exl2
Evaluation results
- strict accuracy on IFEval (0-Shot)Open LLM Leaderboard68.280
- normalized accuracy on BBH (3-Shot)Open LLM Leaderboard29.740
- exact match on MATH Lvl 5 (4-Shot)Open LLM Leaderboard7.330
- acc_norm on GPQA (0-shot)Open LLM Leaderboard2.010
- acc_norm on MuSR (0-shot)Open LLM Leaderboard3.090
- accuracy on MMLU-PRO (5-shot)test set Open LLM Leaderboard29.380