ruT5-ASR

Model was trained by bond005 to correct errors in the ASR output (in particular, output of Wav2Vec2-Large-Ru-Golos). The model is based on ruT5-base.

Usage

To correct ASR outputs the model can be used as a standalone sequence-to-sequence model as follows:

from transformers import T5ForConditionalGeneration, T5Tokenizer
import torch


def rescore(text: str, tokenizer: T5Tokenizer,
            model: T5ForConditionalGeneration) -> str:
    if len(text) == 0:  # if an input text is empty, then we return an empty text too
        return ''
    ru_letters = set('аоуыэяеёюибвгдйжзклмнпрстфхцчшщьъ')
    punct = set('.,:/\\?!()[]{};"\'-')
    x = tokenizer(text, return_tensors='pt', padding=True).to(model.device)
    max_size = int(x.input_ids.shape[1] * 1.5 + 10)
    min_size = 3
    if x.input_ids.shape[1] <= min_size:
        return text  # we don't rescore a very short text
    out = model.generate(**x, do_sample=False, num_beams=5,
                         max_length=max_size, min_length=min_size)
    res = tokenizer.decode(out[0], skip_special_tokens=True).lower().strip()
    res = ' '.join(res.split())
    postprocessed = ''
    for cur in res:
        if cur.isspace() or (cur in punct):
            postprocessed += ' '
        elif cur in ru_letters:
            postprocessed += cur
    return (' '.join(postprocessed.strip().split())).replace('ё', 'е')


# load model and tokenizer
tokenizer_for_rescoring = T5Tokenizer.from_pretrained('bond005/ruT5-ASR')
model_for_rescoring = T5ForConditionalGeneration.from_pretrained('bond005/ruT5-ASR')
if torch.cuda.is_available():
    model_for_rescoring = model_for_rescoring.cuda()

input_examples = [
    'уласны в москве интерне только в большом году что лепровели',
    'мороз и солнце день чудесный',
    'нейро сети эта харошо',
    'да'
]

for src in input_examples:
    rescored = rescore(src, tokenizer_for_rescoring, model_for_rescoring)
    print(f'{src} -> {rescored}')
уласны в москве интерне только в большом году что лепровели -> у нас в москве интернет только в прошлом году что ли провели
мороз и солнце день чудесный -> мороз и солнце день чудесный
нейро сети эта харошо -> нейросети это хорошо
да -> да

Evaluation

This model was evaluated on the test subsets of SberDevices Golos, Common Voice 6.0 (Russian part), and Russian Librispeech, but it was trained on the training subset of SberDevices Golos only. You can see the evaluation script on other datasets, including Russian Librispeech and SOVA RuDevices, on my Kaggle web-page https://www.kaggle.com/code/bond005/wav2vec2-t5-ru-eval

Comparison with "pure" Wav2Vec2-Large-Ru-Golos (WER, %):

dataset name pure ASR ASR with rescoring
Voxforge Ru 27.08 40.48
Russian LibriSpeech 21.87 23.77
Sova RuDevices 25.41 20.13
Golos Crowd 10.14 9.42
Golos Farfield 20.35 17.99
CommonVoice Ru 18.55 11.60
Downloads last month
32
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.