|
|
|
--- |
|
license_name: bria-2.3 |
|
license: other |
|
license_link: https://bria.ai/bria-huggingface-model-license-agreement/ |
|
library_name: diffusers |
|
inference: false |
|
tags: |
|
- text-to-image |
|
- legal liability |
|
- commercial use |
|
extra_gated_description: Model weights from BRIA AI can be obtained with the purchase of a commercial license. Fill in the form below and we reach out to you. |
|
extra_gated_heading: "Fill in this form to request a commercial license for the model" |
|
extra_gated_fields: |
|
Name: text |
|
Company/Org name: text |
|
Org Type (Early/Growth Startup, Enterprise, Academy): text |
|
Role: text |
|
Country: text |
|
Email: text |
|
By submitting this form, I agree to BRIA’s Privacy policy and Terms & conditions, see links below: checkbox |
|
--- |
|
|
|
|
|
|
|
# BRIA 2.3 ControlNet Generative Fill Fast |
|
|
|
|
|
Trained exclusively on the largest multi-source commercial-grade licensed dataset, BRIA 2.3 Generative Fill guarantees best quality while safe for commercial use. The model provides full legal liability coverage for copyright and privacy infrigement and harmful content mitigation, as our dataset does not represent copyrighted materials, such as fictional characters, logos or trademarks, public figures, harmful content or privacy infringing content. |
|
|
|
|
|
BRIA 2.3 Generative Fill is a model designed to fill masked regions in images based on user-provided textual prompts. The model can be applied in different scenarios, including object, replacement, addition, and modification within an image. |
|
|
|
This model works with all types of masks, but is highly optimized to work best with blob-shaped masks which occupy more than 15% of the image area. |
|
|
|
|
|
Join our [Discord community](https://discord.gg/Nxe9YW9zHS) for more information, tutorials, tools, and to connect with other users! |
|
|
|
|
|
# What's New |
|
|
|
BRIA 2.3 ControlNet Generative Fill can be applied on top of BRIA 2.3 Text-to-Image and therefore enable to use [Fast-LORA](https://huggingface.co/briaai/BRIA-2.3-FAST-LORA). This results in extremely fast generative fill model, requires only 1.6s using A10 GPU. |
|
|
|
|
|
|
|
|
|
|
|
### Model Description |
|
|
|
- **Developed by:** BRIA AI |
|
- **Model type:** Latent diffusion image-to-image model |
|
- **License:** [bria-2.3 inpainting Licensing terms & conditions](https://bria.ai/bria-huggingface-model-license-agreement/). |
|
- Purchase is required to license and access the model. |
|
- **Model Description:** BRIA 2.3 Generative Fill was trained exclusively on a professional-grade, licensed dataset. It is designed for commercial use and includes full legal liability coverage. |
|
- **Resources for more information:** [BRIA AI](https://bria.ai/) |
|
|
|
|
|
|
|
|
|
### Get Access to the source code and pre-trained model |
|
Interested in BRIA 2.3 Generative Fill? Our Model is available for purchase. |
|
|
|
**Purchasing access to BRIA 2.3 Generative Fill ensures royalty management and full liability for commercial use.** |
|
|
|
|
|
*Are you a startup or a student?* We encourage you to apply for our specialized Academia and [Startup Programs](https://pages.bria.ai/the-visual-generative-ai-platform-for-builders-startups-plan?_gl=1*cqrl81*_ga*MTIxMDI2NzI5OC4xNjk5NTQ3MDAz*_ga_WRN60H46X4*MTcwOTM5OTMzNC4yNzguMC4xNzA5Mzk5MzM0LjYwLjAuMA..) to gain access. These programs are designed to support emerging businesses and academic pursuits with our cutting-edge technology. |
|
|
|
|
|
**Contact us today to unlock the potential of BRIA 2.3 Generative Fill!** |
|
|
|
By submitting the form above, you agree to BRIA’s [Privacy policy](https://bria.ai/privacy-policy/) and [Terms & conditions](https://bria.ai/terms-and-conditions/). |
|
|
|
|
|
### How To Use |
|
|
|
```python |
|
from diffusers import ( |
|
AutoencoderKL, |
|
LCMScheduler, |
|
) |
|
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline |
|
from controlnet import ControlNetModel, ControlNetConditioningEmbedding |
|
import torch |
|
import numpy as np |
|
from PIL import Image |
|
import requests |
|
import PIL |
|
from io import BytesIO |
|
from torchvision import transforms |
|
import pandas as pd |
|
import os |
|
|
|
|
|
def resize_image_to_retain_ratio(image): |
|
pixel_number = 1024*1024 |
|
granularity_val = 8 |
|
ratio = image.size[0] / image.size[1] |
|
width = int((pixel_number * ratio) ** 0.5) |
|
width = width - (width % granularity_val) |
|
height = int(pixel_number / width) |
|
height = height - (height % granularity_val) |
|
|
|
image = image.resize((width, height)) |
|
return image |
|
|
|
|
|
def download_image(url): |
|
response = requests.get(url) |
|
return PIL.Image.open(BytesIO(response.content)).convert("RGB") |
|
|
|
|
|
def get_masked_image(image, image_mask, width, height): |
|
image_mask = image_mask # fill area is white |
|
image_mask = image_mask.resize((width, height)) # object to remove is white (1) |
|
image_mask_pil = image_mask |
|
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 |
|
image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 |
|
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" |
|
masked_image_to_present = image.copy() |
|
masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel |
|
image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey |
|
image = Image.fromarray((image * 255.0).astype(np.uint8)) |
|
masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) |
|
return image, image_mask_pil, masked_image_to_present |
|
|
|
|
|
image_transforms = transforms.Compose( |
|
[ |
|
transforms.ToTensor(), |
|
] |
|
) |
|
|
|
default_negative_prompt = "blurry" |
|
|
|
img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" |
|
mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" |
|
|
|
init_image = download_image(img_url).resize((1024, 1024)) |
|
mask_image = download_image(mask_url).resize((1024, 1024)) |
|
|
|
|
|
init_image = resize_image_to_retain_ratio(init_image) |
|
width, height = init_image.size |
|
|
|
mask_image = mask_image.convert("L").resize(init_image.size) |
|
|
|
width, height = init_image.size |
|
|
|
# Load, init model |
|
controlnet = ControlNetModel().from_pretrained("briaai/BRIA-2.3-ControlNet-Generative-Fill", torch_dtype=torch.float16) |
|
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) |
|
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae) |
|
|
|
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config) |
|
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA") |
|
pipe.fuse_lora() |
|
pipe = pipe.to(device="cuda") |
|
|
|
# pipe.enable_xformers_memory_efficient_attention() |
|
|
|
generator = torch.Generator(device="cuda").manual_seed(123456) |
|
|
|
vae = pipe.vae |
|
|
|
|
|
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask_image, width, height) |
|
|
|
masked_image_tensor = image_transforms(masked_image) |
|
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5 |
|
|
|
|
|
masked_image_tensor = masked_image_tensor.unsqueeze(0).to(device="cuda") |
|
control_latents = vae.encode( |
|
masked_image_tensor[:, :3, :, :].to(vae.dtype) |
|
).latent_dist.sample() |
|
control_latents = control_latents * vae.config.scaling_factor |
|
|
|
|
|
image_mask = np.array(image_mask)[:,:] |
|
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...] |
|
# binarize the mask |
|
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0) |
|
|
|
mask_tensor = mask_tensor / 255.0 |
|
|
|
mask_tensor = mask_tensor.to(device="cuda") |
|
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest') |
|
|
|
masked_image = torch.cat([control_latents, mask_resized], dim=1) |
|
|
|
prompt = "" |
|
|
|
gen_img = pipe(negative_prompt=default_negative_prompt, prompt=prompt, |
|
controlnet_conditioning_scale=1.0, |
|
num_inference_steps=12, |
|
height=height, width=width, |
|
image = masked_image, # control image |
|
init_image = init_image, |
|
mask_image = mask_tensor, |
|
guidance_scale = 1.2, |
|
generator=generator).images[0] |
|
|
|
``` |
|
|
|
|