A low density DARE ties merge, for benchmarking on the open llm leaderboard.
You probably shouldn't use this model. Use this higher density merge instead, which is scoring much better on the llm leaderboard and perplexity tests: https://huggingface.co/brucethemoose/CaPlatTessDolXaBoros-Yi-34B-200K-DARE-Ties-HighDensity
mergekit config:
models:
- model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
# no parameters necessary for base model
- model: /home/alpha/Storage/Models/Raw/migtissera_Tess-34B-v1.4
parameters:
weight: 0.19
density: 0.44
- model: /home/alpha//Storage/Models/Raw/bhenrym14_airoboros-3_1-yi-34b-200k
parameters:
weight: 0.14
density: 0.34
- model: /home/alpha/Storage/Models/Raw/Nous-Capybara-34B
parameters:
weight: 0.19
density: 0.44
- model: /home/alpha/Storage/Models/Raw/kyujinpy_PlatYi-34B-200K-Q
parameters:
weight: 0.14
density: 0.34
- model: /home/alpha/FastModels/ehartford_dolphin-2.2-yi-34b-200k
parameters:
weight: 0.19
density: 0.44
- model: /home/alpha/FastModels/fblgit_una-xaberius-34b-v1beta
parameters:
weight: 0.15
density: 0.08
merge_method: dare_ties
base_model: /home/alpha/Storage/Models/Raw/chargoddard_Yi-34B-200K-Llama
parameters:
int8_mask: true
dtype: bfloat16
- Downloads last month
- 1,202
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.