Edit model card
Configuration Parsing Warning: In config.json: "quantization_config.bits" must be an integer

Model Card for Mistral-Large-Instruct-2407

Mistral-Large-Instruct-2407 is an advanced dense Large Language Model (LLM) of 123B parameters with state-of-the-art reasoning, knowledge and coding capabilities.

For more details about this model please refer to our release blog post.

Key features

  • Multi-lingual by design: Dozens of languages supported, including English, French, German, Spanish, Italian, Chinese, Japanese, Korean, Portuguese, Dutch and Polish.
  • Proficient in coding: Trained on 80+ coding languages such as Python, Java, C, C++, Javacsript, and Bash. Also trained on more specific languages such as Swift and Fortran.
  • Agentic-centric: Best-in-class agentic capabilities with native function calling and JSON outputting.
  • Advanced Reasoning: State-of-the-art mathematical and reasoning capabilities.
  • Mistral Research License: Allows usage and modification for research and non-commercial usages.
  • Large Context: A large 128k context window.

Metrics

Base Pretrained Benchmarks

Benchmark Score
MMLU 84.0%

Base Pretrained Multilingual Benchmarks (MMLU)

Benchmark Score
French 82.8%
German 81.6%
Spanish 82.7%
Italian 82.7%
Dutch 80.7%
Portuguese 81.6%
Russian 79.0%
Korean 60.1%
Japanese 78.8%
Chinese 74.8%

Instruction Benchmarks

Benchmark Score
MT Bench 8.63
Wild Bench 56.3
Arena Hard 73.2

Code & Reasoning Benchmarks

Benchmark Score
Human Eval 92%
Human Eval Plus 87%
MBPP Base 80%
MBPP Plus 69%

Math Benchmarks

Benchmark Score
GSM8K 93%
Math Instruct (0-shot, no CoT) 70%
Math Instruct (0-shot, CoT) 71.5%

Usage

The model can be used with two different frameworks

Mistral Inference

Install

It is recommended to use mistralai/Mistral-Large-Instruct-2407 with mistral-inference. For HF transformers code snippets, please keep scrolling.

pip install mistral_inference

Download

from huggingface_hub import snapshot_download
from pathlib import Path

mistral_models_path = Path.home().joinpath('mistral_models', 'Large')
mistral_models_path.mkdir(parents=True, exist_ok=True)

snapshot_download(repo_id="mistralai/Mistral-Large-Instruct-2407", allow_patterns=["params.json", "consolidated-*.safetensors", "tokenizer.model.v3"], local_dir=mistral_models_path)

Chat

After installing mistral_inference, a mistral-chat CLI command should be available in your environment. Given the size of this model, you will need a node with several GPUs (more than 300GB cumulated vRAM). If you have 8 GPUs on your machine, you can chat with the model using

torchrun --nproc-per-node 8 --no-python mistral-chat $HOME/mistral_models/Large --instruct --max_tokens 256 --temperature 0.7

E.g. Try out something like:

How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar.

Instruct following

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest

tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
model = Transformer.from_folder(mistral_models_path)

prompt = "How expensive would it be to ask a window cleaner to clean all windows in Paris. Make a reasonable guess in US Dollar."

completion_request = ChatCompletionRequest(messages=[UserMessage(content=prompt)])

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)

Function calling

from mistral_common.protocol.instruct.tool_calls import Function, Tool
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest


tokenizer = MistralTokenizer.from_file(f"{mistral_models_path}/tokenizer.model.v3")
model = Transformer.from_folder(mistral_models_path)

completion_request = ChatCompletionRequest(
    tools=[
        Tool(
            function=Function(
                name="get_current_weather",
                description="Get the current weather",
                parameters={
                    "type": "object",
                    "properties": {
                        "location": {
                            "type": "string",
                            "description": "The city and state, e.g. San Francisco, CA",
                        },
                        "format": {
                            "type": "string",
                            "enum": ["celsius", "fahrenheit"],
                            "description": "The temperature unit to use. Infer this from the users location.",
                        },
                    },
                    "required": ["location", "format"],
                },
            )
        )
    ],
    messages=[
        UserMessage(content="What's the weather like today in Paris?"),
        ],
)

tokens = tokenizer.encode_chat_completion(completion_request).tokens

out_tokens, _ = generate([tokens], model, max_tokens=256, temperature=0.7, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])

print(result)

Transformers

If you want to use Hugging Face transformers to generate text, you can do something like this.

from transformers import pipeline

messages = [
    {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
    {"role": "user", "content": "Who are you?"},
]
chatbot = pipeline("text-generation", model="mistralai/Mistral-Large-Instruct-2407")
chatbot(messages)

Limitations

The Mistral Large model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Diogo Costa, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall

Downloads last month
2
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.