mod-1 / README.md
bumpe's picture
Update README.md
f2cb073 verified
---
license: apache-2.0
language:
- en
library_name: pythae
tags:
- music
---
---
license: agpl-3.0
---from transformers import GPT2Tokenizer, GPT2LMHeadModel, Trainer, TrainingArguments
from datasets import load_dataset
import numpy as np
# Carica il modello e il tokenizer
tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
model = GPT2LMHeadModel.from_pretrained('gpt2')
# Carica un dataset personalizzato (esempio con CSV)
dataset = load_dataset('csv', data_files={'train': 'path/to/train.csv', 'test': 'path/to/test.csv'})
# Tokenizzazione del dataset
def tokenize_function(examples):
return tokenizer(examples['text'], padding='max_length', truncation=True, max_length=128)
tokenized_datasets = dataset.map(tokenize_function, batched=True)
# Configura i parametri di addestramento
training_args = TrainingArguments(
output_dir='./results',
num_train_epochs=3,
per_device_train_batch_size=4,
save_steps=10_000,
save_total_limit=2,
evaluation_strategy="epoch"
)
# Funzione per calcolare le metriche
def compute_metrics(eval_pred):
logits, labels = eval_pred
predictions = np.argmax(logits, axis=-1)
return metric.compute(predictions=predictions, references=labels)
# Crea il trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=tokenized_datasets['train'],
eval_dataset=tokenized_datasets['test'],
compute_metrics=compute_metrics
)
# Esegui l'addestramento
trainer.train()