|
#ifdef WITH_PYTHON_LAYER |
|
#include "boost/python.hpp" |
|
namespace bp = boost::python; |
|
#endif |
|
|
|
#include <gflags/gflags.h> |
|
#include <glog/logging.h> |
|
|
|
#include <cstring> |
|
#include <map> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include "boost/algorithm/string.hpp" |
|
#include "caffe/caffe.hpp" |
|
#include "caffe/util/signal_handler.h" |
|
|
|
using caffe::Blob; |
|
using caffe::Caffe; |
|
using caffe::Net; |
|
using caffe::Layer; |
|
using caffe::Solver; |
|
using caffe::shared_ptr; |
|
using caffe::string; |
|
using caffe::Timer; |
|
using caffe::vector; |
|
using std::ostringstream; |
|
|
|
DEFINE_string(gpu, "", |
|
"Optional; run in GPU mode on given device IDs separated by ','." |
|
"Use '-gpu all' to run on all available GPUs. The effective training " |
|
"batch size is multiplied by the number of devices."); |
|
DEFINE_string(solver, "", |
|
"The solver definition protocol buffer text file."); |
|
DEFINE_string(model, "", |
|
"The model definition protocol buffer text file."); |
|
DEFINE_string(phase, "", |
|
"Optional; network phase (TRAIN or TEST). Only used for 'time'."); |
|
DEFINE_int32(level, 0, |
|
"Optional; network level."); |
|
DEFINE_string(stage, "", |
|
"Optional; network stages (not to be confused with phase), " |
|
"separated by ','."); |
|
DEFINE_string(snapshot, "", |
|
"Optional; the snapshot solver state to resume training."); |
|
DEFINE_string(weights, "", |
|
"Optional; the pretrained weights to initialize finetuning, " |
|
"separated by ','. Cannot be set simultaneously with snapshot."); |
|
DEFINE_int32(iterations, 50, |
|
"The number of iterations to run."); |
|
DEFINE_string(sigint_effect, "stop", |
|
"Optional; action to take when a SIGINT signal is received: " |
|
"snapshot, stop or none."); |
|
DEFINE_string(sighup_effect, "snapshot", |
|
"Optional; action to take when a SIGHUP signal is received: " |
|
"snapshot, stop or none."); |
|
|
|
|
|
typedef int (*BrewFunction)(); |
|
typedef std::map<caffe::string, BrewFunction> BrewMap; |
|
BrewMap g_brew_map; |
|
|
|
#define RegisterBrewFunction(func) \ |
|
namespace { \ |
|
class __Registerer_##func { \ |
|
public: \ |
|
__Registerer_##func() { \ |
|
g_brew_map[#func] = &func; \ |
|
} \ |
|
}; \ |
|
__Registerer_##func g_registerer_##func; \ |
|
} |
|
|
|
static BrewFunction GetBrewFunction(const caffe::string& name) { |
|
if (g_brew_map.count(name)) { |
|
return g_brew_map[name]; |
|
} else { |
|
LOG(ERROR) << "Available caffe actions:"; |
|
for (BrewMap::iterator it = g_brew_map.begin(); |
|
it != g_brew_map.end(); ++it) { |
|
LOG(ERROR) << "\t" << it->first; |
|
} |
|
LOG(FATAL) << "Unknown action: " << name; |
|
return NULL; |
|
} |
|
} |
|
|
|
|
|
static void get_gpus(vector<int>* gpus) { |
|
if (FLAGS_gpu == "all") { |
|
int count = 0; |
|
#ifndef CPU_ONLY |
|
CUDA_CHECK(cudaGetDeviceCount(&count)); |
|
#else |
|
NO_GPU; |
|
#endif |
|
for (int i = 0; i < count; ++i) { |
|
gpus->push_back(i); |
|
} |
|
} else if (FLAGS_gpu.size()) { |
|
vector<string> strings; |
|
boost::split(strings, FLAGS_gpu, boost::is_any_of(",")); |
|
for (int i = 0; i < strings.size(); ++i) { |
|
gpus->push_back(boost::lexical_cast<int>(strings[i])); |
|
} |
|
} else { |
|
CHECK_EQ(gpus->size(), 0); |
|
} |
|
} |
|
|
|
|
|
caffe::Phase get_phase_from_flags(caffe::Phase default_value) { |
|
if (FLAGS_phase == "") |
|
return default_value; |
|
if (FLAGS_phase == "TRAIN") |
|
return caffe::TRAIN; |
|
if (FLAGS_phase == "TEST") |
|
return caffe::TEST; |
|
LOG(FATAL) << "phase must be \"TRAIN\" or \"TEST\""; |
|
return caffe::TRAIN; |
|
} |
|
|
|
|
|
vector<string> get_stages_from_flags() { |
|
vector<string> stages; |
|
boost::split(stages, FLAGS_stage, boost::is_any_of(",")); |
|
return stages; |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
int device_query() { |
|
LOG(INFO) << "Querying GPUs " << FLAGS_gpu; |
|
vector<int> gpus; |
|
get_gpus(&gpus); |
|
for (int i = 0; i < gpus.size(); ++i) { |
|
caffe::Caffe::SetDevice(gpus[i]); |
|
caffe::Caffe::DeviceQuery(); |
|
} |
|
return 0; |
|
} |
|
RegisterBrewFunction(device_query); |
|
|
|
|
|
|
|
caffe::SolverAction::Enum GetRequestedAction( |
|
const std::string& flag_value) { |
|
if (flag_value == "stop") { |
|
return caffe::SolverAction::STOP; |
|
} |
|
if (flag_value == "snapshot") { |
|
return caffe::SolverAction::SNAPSHOT; |
|
} |
|
if (flag_value == "none") { |
|
return caffe::SolverAction::NONE; |
|
} |
|
LOG(FATAL) << "Invalid signal effect \""<< flag_value << "\" was specified"; |
|
} |
|
|
|
|
|
int train() { |
|
CHECK_GT(FLAGS_solver.size(), 0) << "Need a solver definition to train."; |
|
CHECK(!FLAGS_snapshot.size() || !FLAGS_weights.size()) |
|
<< "Give a snapshot to resume training or weights to finetune " |
|
"but not both."; |
|
vector<string> stages = get_stages_from_flags(); |
|
|
|
caffe::SolverParameter solver_param; |
|
caffe::ReadSolverParamsFromTextFileOrDie(FLAGS_solver, &solver_param); |
|
|
|
solver_param.mutable_train_state()->set_level(FLAGS_level); |
|
for (int i = 0; i < stages.size(); i++) { |
|
solver_param.mutable_train_state()->add_stage(stages[i]); |
|
} |
|
|
|
|
|
|
|
if (FLAGS_gpu.size() == 0 |
|
&& solver_param.has_solver_mode() |
|
&& solver_param.solver_mode() == caffe::SolverParameter_SolverMode_GPU) { |
|
if (solver_param.has_device_id()) { |
|
FLAGS_gpu = "" + |
|
boost::lexical_cast<string>(solver_param.device_id()); |
|
} else { |
|
FLAGS_gpu = "" + boost::lexical_cast<string>(0); |
|
} |
|
} |
|
|
|
vector<int> gpus; |
|
get_gpus(&gpus); |
|
if (gpus.size() == 0) { |
|
LOG(INFO) << "Use CPU."; |
|
Caffe::set_mode(Caffe::CPU); |
|
} else { |
|
ostringstream s; |
|
for (int i = 0; i < gpus.size(); ++i) { |
|
s << (i ? ", " : "") << gpus[i]; |
|
} |
|
LOG(INFO) << "Using GPUs " << s.str(); |
|
#ifndef CPU_ONLY |
|
cudaDeviceProp device_prop; |
|
for (int i = 0; i < gpus.size(); ++i) { |
|
cudaGetDeviceProperties(&device_prop, gpus[i]); |
|
LOG(INFO) << "GPU " << gpus[i] << ": " << device_prop.name; |
|
} |
|
#endif |
|
solver_param.set_device_id(gpus[0]); |
|
Caffe::SetDevice(gpus[0]); |
|
Caffe::set_mode(Caffe::GPU); |
|
Caffe::set_solver_count(gpus.size()); |
|
} |
|
|
|
caffe::SignalHandler signal_handler( |
|
GetRequestedAction(FLAGS_sigint_effect), |
|
GetRequestedAction(FLAGS_sighup_effect)); |
|
|
|
if (FLAGS_snapshot.size()) { |
|
solver_param.clear_weights(); |
|
} else if (FLAGS_weights.size()) { |
|
solver_param.clear_weights(); |
|
solver_param.add_weights(FLAGS_weights); |
|
} |
|
|
|
shared_ptr<caffe::Solver<float> > |
|
solver(caffe::SolverRegistry<float>::CreateSolver(solver_param)); |
|
|
|
solver->SetActionFunction(signal_handler.GetActionFunction()); |
|
|
|
if (FLAGS_snapshot.size()) { |
|
LOG(INFO) << "Resuming from " << FLAGS_snapshot; |
|
solver->Restore(FLAGS_snapshot.c_str()); |
|
} |
|
|
|
LOG(INFO) << "Starting Optimization"; |
|
if (gpus.size() > 1) { |
|
#ifdef USE_NCCL |
|
caffe::NCCL<float> nccl(solver); |
|
nccl.Run(gpus, FLAGS_snapshot.size() > 0 ? FLAGS_snapshot.c_str() : NULL); |
|
#else |
|
LOG(FATAL) << "Multi-GPU execution not available - rebuild with USE_NCCL"; |
|
#endif |
|
} else { |
|
solver->Solve(); |
|
} |
|
LOG(INFO) << "Optimization Done."; |
|
return 0; |
|
} |
|
RegisterBrewFunction(train); |
|
|
|
|
|
|
|
int test() { |
|
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to score."; |
|
CHECK_GT(FLAGS_weights.size(), 0) << "Need model weights to score."; |
|
vector<string> stages = get_stages_from_flags(); |
|
|
|
|
|
vector<int> gpus; |
|
get_gpus(&gpus); |
|
if (gpus.size() != 0) { |
|
LOG(INFO) << "Use GPU with device ID " << gpus[0]; |
|
#ifndef CPU_ONLY |
|
cudaDeviceProp device_prop; |
|
cudaGetDeviceProperties(&device_prop, gpus[0]); |
|
LOG(INFO) << "GPU device name: " << device_prop.name; |
|
#endif |
|
Caffe::SetDevice(gpus[0]); |
|
Caffe::set_mode(Caffe::GPU); |
|
} else { |
|
LOG(INFO) << "Use CPU."; |
|
Caffe::set_mode(Caffe::CPU); |
|
} |
|
|
|
Net<float> caffe_net(FLAGS_model, caffe::TEST, FLAGS_level, &stages); |
|
caffe_net.CopyTrainedLayersFrom(FLAGS_weights); |
|
LOG(INFO) << "Running for " << FLAGS_iterations << " iterations."; |
|
|
|
vector<int> test_score_output_id; |
|
vector<float> test_score; |
|
float loss = 0; |
|
for (int i = 0; i < FLAGS_iterations; ++i) { |
|
float iter_loss; |
|
const vector<Blob<float>*>& result = |
|
caffe_net.Forward(&iter_loss); |
|
loss += iter_loss; |
|
int idx = 0; |
|
for (int j = 0; j < result.size(); ++j) { |
|
const float* result_vec = result[j]->cpu_data(); |
|
for (int k = 0; k < result[j]->count(); ++k, ++idx) { |
|
const float score = result_vec[k]; |
|
if (i == 0) { |
|
test_score.push_back(score); |
|
test_score_output_id.push_back(j); |
|
} else { |
|
test_score[idx] += score; |
|
} |
|
const std::string& output_name = caffe_net.blob_names()[ |
|
caffe_net.output_blob_indices()[j]]; |
|
LOG(INFO) << "Batch " << i << ", " << output_name << " = " << score; |
|
} |
|
} |
|
} |
|
loss /= FLAGS_iterations; |
|
LOG(INFO) << "Loss: " << loss; |
|
for (int i = 0; i < test_score.size(); ++i) { |
|
const std::string& output_name = caffe_net.blob_names()[ |
|
caffe_net.output_blob_indices()[test_score_output_id[i]]]; |
|
const float loss_weight = caffe_net.blob_loss_weights()[ |
|
caffe_net.output_blob_indices()[test_score_output_id[i]]]; |
|
std::ostringstream loss_msg_stream; |
|
const float mean_score = test_score[i] / FLAGS_iterations; |
|
if (loss_weight) { |
|
loss_msg_stream << " (* " << loss_weight |
|
<< " = " << loss_weight * mean_score << " loss)"; |
|
} |
|
LOG(INFO) << output_name << " = " << mean_score << loss_msg_stream.str(); |
|
} |
|
|
|
return 0; |
|
} |
|
RegisterBrewFunction(test); |
|
|
|
|
|
|
|
int time() { |
|
CHECK_GT(FLAGS_model.size(), 0) << "Need a model definition to time."; |
|
caffe::Phase phase = get_phase_from_flags(caffe::TRAIN); |
|
vector<string> stages = get_stages_from_flags(); |
|
|
|
|
|
vector<int> gpus; |
|
get_gpus(&gpus); |
|
if (gpus.size() != 0) { |
|
LOG(INFO) << "Use GPU with device ID " << gpus[0]; |
|
Caffe::SetDevice(gpus[0]); |
|
Caffe::set_mode(Caffe::GPU); |
|
} else { |
|
LOG(INFO) << "Use CPU."; |
|
Caffe::set_mode(Caffe::CPU); |
|
} |
|
|
|
Net<float> caffe_net(FLAGS_model, phase, FLAGS_level, &stages); |
|
|
|
|
|
|
|
LOG(INFO) << "Performing Forward"; |
|
|
|
|
|
float initial_loss; |
|
caffe_net.Forward(&initial_loss); |
|
LOG(INFO) << "Initial loss: " << initial_loss; |
|
LOG(INFO) << "Performing Backward"; |
|
caffe_net.Backward(); |
|
|
|
const vector<shared_ptr<Layer<float> > >& layers = caffe_net.layers(); |
|
const vector<vector<Blob<float>*> >& bottom_vecs = caffe_net.bottom_vecs(); |
|
const vector<vector<Blob<float>*> >& top_vecs = caffe_net.top_vecs(); |
|
const vector<vector<bool> >& bottom_need_backward = |
|
caffe_net.bottom_need_backward(); |
|
LOG(INFO) << "*** Benchmark begins ***"; |
|
LOG(INFO) << "Testing for " << FLAGS_iterations << " iterations."; |
|
Timer total_timer; |
|
total_timer.Start(); |
|
Timer forward_timer; |
|
Timer backward_timer; |
|
Timer timer; |
|
std::vector<double> forward_time_per_layer(layers.size(), 0.0); |
|
std::vector<double> backward_time_per_layer(layers.size(), 0.0); |
|
double forward_time = 0.0; |
|
double backward_time = 0.0; |
|
for (int j = 0; j < FLAGS_iterations; ++j) { |
|
Timer iter_timer; |
|
iter_timer.Start(); |
|
forward_timer.Start(); |
|
for (int i = 0; i < layers.size(); ++i) { |
|
timer.Start(); |
|
layers[i]->Forward(bottom_vecs[i], top_vecs[i]); |
|
forward_time_per_layer[i] += timer.MicroSeconds(); |
|
} |
|
forward_time += forward_timer.MicroSeconds(); |
|
backward_timer.Start(); |
|
for (int i = layers.size() - 1; i >= 0; --i) { |
|
timer.Start(); |
|
layers[i]->Backward(top_vecs[i], bottom_need_backward[i], |
|
bottom_vecs[i]); |
|
backward_time_per_layer[i] += timer.MicroSeconds(); |
|
} |
|
backward_time += backward_timer.MicroSeconds(); |
|
LOG(INFO) << "Iteration: " << j + 1 << " forward-backward time: " |
|
<< iter_timer.MilliSeconds() << " ms."; |
|
} |
|
LOG(INFO) << "Average time per layer: "; |
|
for (int i = 0; i < layers.size(); ++i) { |
|
const caffe::string& layername = layers[i]->layer_param().name(); |
|
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername << |
|
"\tforward: " << forward_time_per_layer[i] / 1000 / |
|
FLAGS_iterations << " ms."; |
|
LOG(INFO) << std::setfill(' ') << std::setw(10) << layername << |
|
"\tbackward: " << backward_time_per_layer[i] / 1000 / |
|
FLAGS_iterations << " ms."; |
|
} |
|
total_timer.Stop(); |
|
LOG(INFO) << "Average Forward pass: " << forward_time / 1000 / |
|
FLAGS_iterations << " ms."; |
|
LOG(INFO) << "Average Backward pass: " << backward_time / 1000 / |
|
FLAGS_iterations << " ms."; |
|
LOG(INFO) << "Average Forward-Backward: " << total_timer.MilliSeconds() / |
|
FLAGS_iterations << " ms."; |
|
LOG(INFO) << "Total Time: " << total_timer.MilliSeconds() << " ms."; |
|
LOG(INFO) << "*** Benchmark ends ***"; |
|
return 0; |
|
} |
|
RegisterBrewFunction(time); |
|
|
|
int main(int argc, char** argv) { |
|
|
|
FLAGS_alsologtostderr = 1; |
|
|
|
gflags::SetVersionString(AS_STRING(CAFFE_VERSION)); |
|
|
|
gflags::SetUsageMessage("command line brew\n" |
|
"usage: caffe <command> <args>\n\n" |
|
"commands:\n" |
|
" train train or finetune a model\n" |
|
" test score a model\n" |
|
" device_query show GPU diagnostic information\n" |
|
" time benchmark model execution time"); |
|
|
|
caffe::GlobalInit(&argc, &argv); |
|
if (argc == 2) { |
|
#ifdef WITH_PYTHON_LAYER |
|
try { |
|
#endif |
|
return GetBrewFunction(caffe::string(argv[1]))(); |
|
#ifdef WITH_PYTHON_LAYER |
|
} catch (bp::error_already_set) { |
|
PyErr_Print(); |
|
return 1; |
|
} |
|
#endif |
|
} else { |
|
gflags::ShowUsageWithFlagsRestrict(argv[0], "tools/caffe"); |
|
} |
|
} |
|
|