YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/model-cards#model-card-metadata)
AI Model Name: Llama 3 8B "Built with Meta Llama 3" https://llama.meta.com/llama3/license/
This is the result of running AutoAWQ to quantize the LLaMA-3 8B model to ~4 bits/parameter.
To launch an OpenAI-compatible API endpoint on your Linux server:
git lfs install
git clone https://huggingface.co/catid/cat-llama-3-8b-awq-q128-w4-gemm
conda create -n vllm8 python=3.10 -y && conda activate vllm8
pip install -U git+https://github.com/vllm-project/vllm.git@a134ef6
python -m vllm.entrypoints.openai.api_server --model cat-llama-3-8b-awq-q128-w4-gemm
To use 2 GPUs add --tensor-parallel-size 2 --gpu-memory-utilization 0.95
:
python -m vllm.entrypoints.openai.api_server --model cat-llama-3-8b-awq-q128-w4-gemm --tensor-parallel-size 2 --gpu-memory-utilization 0.95
My personal TextWorld common-sense reasoning benchmark ( https://github.com/catid/textworld_llm_benchmark ) results for this model:
cat-llama-3-8b-awq-q128-w4-gemm : Average Score: 2.02 ± 0.29
Mixtral 8x7B : Average Score: 2.22 ± 0.33
GPT 3.5 : Average Score: 2.8 ± 1.69
This is very respectable for a relatively small model!
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.