|
--- |
|
license: apache-2.0 |
|
--- |
|
|
|
Finetuned from p1atdev/siglip-tagger-test-3 |
|
https://huggingface.co/p1atdev/siglip-tagger-test-3 |
|
|
|
test work |
|
|
|
Usage: |
|
``` |
|
import torch |
|
import torch.nn as nn |
|
import numpy as np |
|
from dataclasses import dataclass |
|
from transformers import SiglipVisionModel, SiglipPreTrainedModel, SiglipVisionConfig, AutoImageProcessor |
|
from transformers.utils import ModelOutput |
|
|
|
@dataclass |
|
class SiglipForImageClassifierOutput(ModelOutput): |
|
loss: torch.FloatTensor | None = None |
|
logits: torch.FloatTensor | None = None |
|
pooler_output: torch.FloatTensor | None = None |
|
hidden_states: tuple[torch.FloatTensor, ...] | None = None |
|
attentions: tuple[torch.FloatTensor, ...] | None = None |
|
|
|
class SiglipForImageClassification(SiglipPreTrainedModel): |
|
config_class = SiglipVisionConfig |
|
main_input_name = "pixel_values" |
|
|
|
def __init__( |
|
self, |
|
config, |
|
): |
|
super().__init__(config) |
|
|
|
# self.num_labels = config.num_labels |
|
self.siglip = SiglipVisionModel(config) |
|
|
|
# Classifier head |
|
self.classifier = ( |
|
nn.Linear(config.hidden_size, config.num_labels) |
|
if config.num_labels > 0 |
|
else nn.Identity() |
|
) |
|
|
|
# Initialize weights and apply final processing |
|
self.post_init() |
|
|
|
def forward( |
|
self, pixel_values: torch.FloatTensor, labels: torch.LongTensor | None = None |
|
): |
|
outputs = self.siglip(pixel_values) |
|
pooler_output = outputs.pooler_output |
|
logits = self.classifier(pooler_output) |
|
|
|
loss = None |
|
if labels is not None: |
|
loss_fct = nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits, labels) |
|
|
|
return SiglipForImageClassifierOutput( |
|
loss=loss, |
|
logits=logits, |
|
pooler_output=outputs.pooler_output, |
|
hidden_states=outputs.hidden_states, |
|
attentions=outputs.attentions, |
|
) |
|
|
|
# モデル設定のロード |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
config = SiglipVisionConfig.from_pretrained('cella110n/siglip-tagger-FT3ep') |
|
processor = AutoImageProcessor.from_pretrained("cella110n/siglip-tagger-FT3ep", config=config) |
|
model = SiglipForImageClassification.from_pretrained('cella110n/siglip-tagger-FT3ep', torch_dtype=torch.bfloat16).to(device) |
|
|
|
model.eval() |
|
print("Model Loaded. device:", model.device) |
|
|
|
from PIL import Image |
|
|
|
# 入力画像サイズの確認と調整 |
|
img_path = "path/to/image" |
|
img = Image.open(img_path). |
|
|
|
inputs = processor(images=img, return_tensors="pt") # 画像をモデルに適した形式に変換 |
|
print("Image processed.") |
|
|
|
# inputs.pixel_valuesの画像を表示 |
|
img = inputs.pixel_values[0].permute(1, 2, 0).cpu().numpy() |
|
plt.imshow(img) |
|
plt.axis('off') |
|
plt.show() |
|
|
|
# # モデルの予測実行 |
|
with torch.no_grad(): |
|
logits = (model( |
|
**inputs.to( |
|
model.device, |
|
model.dtype |
|
) |
|
) |
|
.logits.detach() |
|
.cpu() |
|
.float() |
|
) |
|
|
|
logits = np.clip(logits, 0.0, 1.0) # オーバーフローを防ぐためにlogitsをクリップ |
|
|
|
prob_cutoff = 0.3 # この確率以上のクラスのみを表示 |
|
|
|
result = {} |
|
|
|
for prediction in logits: |
|
for i, prob in enumerate(prediction): |
|
if prob.item() > prob_cutoff: |
|
result[model.config.id2label[i]] = prob.item() |
|
|
|
# resultを、高いほうから表示 |
|
sorted_result = sorted(result.items(), key=lambda x: x[1], reverse=True) |
|
sorted_result |
|
``` |