Mixtral MOE 2x7B

MoE of the following models :

gpu code example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "cloudyu/Mixtral_7Bx2_MoE"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='auto',local_files_only=False, load_in_4bit=True
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids.to("cuda")

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")

CPU example

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
import math

## v2 models
model_path = "cloudyu/Mixtral_7Bx2_MoE"

tokenizer = AutoTokenizer.from_pretrained(model_path, use_default_system_prompt=False)
model = AutoModelForCausalLM.from_pretrained(
    model_path, torch_dtype=torch.float32, device_map='cpu',local_files_only=False
)
print(model)
prompt = input("please input prompt:")
while len(prompt) > 0:
  input_ids = tokenizer(prompt, return_tensors="pt").input_ids

  generation_output = model.generate(
    input_ids=input_ids, max_new_tokens=500,repetition_penalty=1.2
  )
  print(tokenizer.decode(generation_output[0]))
  prompt = input("please input prompt:")

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 73.43
AI2 Reasoning Challenge (25-Shot) 71.25
HellaSwag (10-Shot) 87.45
MMLU (5-Shot) 64.98
TruthfulQA (0-shot) 67.23
Winogrande (5-shot) 81.22
GSM8k (5-shot) 68.46
Downloads last month
694
Safetensors
Model size
12.9B params
Tensor type
BF16
Β·
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for cloudyu/Mixtral_7Bx2_MoE

Quantizations
7 models

Spaces using cloudyu/Mixtral_7Bx2_MoE 15

Evaluation results