|
--- |
|
language: |
|
- pt |
|
license: apache-2.0 |
|
library_name: transformers |
|
tags: |
|
- text-generation-inference |
|
- llama-cpp |
|
- gguf-my-repo |
|
datasets: |
|
- nicholasKluge/instruct-aira-dataset-v3 |
|
- cnmoro/GPT4-500k-Augmented-PTBR-Clean |
|
- rhaymison/orca-math-portuguese-64k |
|
- nicholasKluge/reward-aira-dataset |
|
metrics: |
|
- perplexity |
|
pipeline_tag: text-generation |
|
widget: |
|
- text: <instruction>Cite algumas bandas de rock brasileiras famosas.</instruction> |
|
example_title: Exemplo |
|
- text: <instruction>Invente uma história sobre um encanador com poderes mágicos.</instruction> |
|
example_title: Exemplo |
|
- text: <instruction>Qual cidade é a capital do estado do Rio Grande do Sul?</instruction> |
|
example_title: Exemplo |
|
- text: <instruction>Diga o nome de uma maravilha culinária característica da cosinha |
|
Portuguesa?</instruction> |
|
example_title: Exemplo |
|
inference: |
|
parameters: |
|
repetition_penalty: 1.2 |
|
temperature: 0.2 |
|
top_k: 20 |
|
top_p: 0.2 |
|
max_new_tokens: 150 |
|
co2_eq_emissions: |
|
emissions: 42270 |
|
source: CodeCarbon |
|
training_type: pre-training |
|
geographical_location: Germany |
|
hardware_used: NVIDIA A100-SXM4-80GB |
|
base_model: TucanoBR/Tucano-2b4-Instruct |
|
model-index: |
|
- name: Tucano-2b4-Instruct |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: CALAME-PT |
|
type: NOVA-vision-language/calame-pt |
|
split: all |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
value: 57.66 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/datasets/NOVA-vision-language/calame-pt |
|
name: Context-Aware LAnguage Modeling Evaluation for Portuguese |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: LAMBADA-PT |
|
type: TucanoBR/lambada-pt |
|
split: train |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc |
|
value: 39.92 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/datasets/TucanoBR/lambada-pt |
|
name: LAMBADA-PT |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ENEM Challenge (No Images) |
|
type: eduagarcia/enem_challenge |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 20.43 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BLUEX (No Images) |
|
type: eduagarcia-temp/BLUEX_without_images |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 22.81 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: OAB Exams |
|
type: eduagarcia/oab_exams |
|
split: train |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc |
|
value: 24.83 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 RTE |
|
type: assin2 |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 43.39 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Assin2 STS |
|
type: eduagarcia/portuguese_benchmark |
|
split: test |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: pearson |
|
value: 6.31 |
|
name: pearson |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: FaQuAD NLI |
|
type: ruanchaves/faquad-nli |
|
split: test |
|
args: |
|
num_few_shot: 15 |
|
metrics: |
|
- type: f1_macro |
|
value: 43.97 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HateBR Binary |
|
type: ruanchaves/hatebr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 27.7 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: PT Hate Speech Binary |
|
type: hate_speech_portuguese |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 29.18 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: tweetSentBR |
|
type: eduagarcia-temp/tweetsentbr |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: f1_macro |
|
value: 43.11 |
|
name: f1-macro |
|
source: |
|
url: https://huggingface.co/spaces/eduagarcia/open_pt_llm_leaderboard |
|
name: Open Portuguese LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: ARC-Challenge (PT) |
|
type: arc_pt |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 32.05 |
|
name: normalized accuracy |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (PT) |
|
type: hellaswag_pt |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 48.28 |
|
name: normalized accuracy |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (PT) |
|
type: truthfulqa_pt |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 38.44 |
|
name: bleurt |
|
source: |
|
url: https://github.com/nlp-uoregon/mlmm-evaluation |
|
name: Evaluation Framework for Multilingual Large Language Models |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Alpaca-Eval (PT) |
|
type: alpaca_eval_pt |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: lc_winrate |
|
value: 13.0 |
|
name: length controlled winrate |
|
source: |
|
url: https://github.com/tatsu-lab/alpaca_eval |
|
name: AlpacaEval |
|
--- |
|
|
|
# cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF |
|
This model was converted to GGUF format from [`TucanoBR/Tucano-2b4-Instruct`](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space. |
|
Refer to the [original model card](https://huggingface.co/TucanoBR/Tucano-2b4-Instruct) for more details on the model. |
|
|
|
## Use with llama.cpp |
|
Install llama.cpp through brew (works on Mac and Linux) |
|
|
|
```bash |
|
brew install llama.cpp |
|
|
|
``` |
|
Invoke the llama.cpp server or the CLI. |
|
|
|
### CLI: |
|
```bash |
|
llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
|
|
### Server: |
|
```bash |
|
llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048 |
|
``` |
|
|
|
Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well. |
|
|
|
Step 1: Clone llama.cpp from GitHub. |
|
``` |
|
git clone https://github.com/ggerganov/llama.cpp |
|
``` |
|
|
|
Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux). |
|
``` |
|
cd llama.cpp && LLAMA_CURL=1 make |
|
``` |
|
|
|
Step 3: Run inference through the main binary. |
|
``` |
|
./llama-cli --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -p "The meaning to life and the universe is" |
|
``` |
|
or |
|
``` |
|
./llama-server --hf-repo cnmoro/Tucano-2b4-Instruct-Q4_K_M-GGUF --hf-file tucano-2b4-instruct-q4_k_m.gguf -c 2048 |
|
``` |
|
|