metadata
license: apache-2.0
base_model: Qwen/Qwen2-0.5B
tags:
- generated_from_trainer
model-index:
- name: 0.5b out
results: []
See axolotl config
axolotl version: 0.4.1
base_model: Qwen/Qwen2-0.5B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
# load_in_4bit: true
chat_template: chatml
datasets:
- path: /workspace/datasets/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/SystemChat_sharegpt.jsonl
type: sharegpt
conversation: chatml
# - path: /workspace/datasets/SystemChat_multilingual_sharegpt.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/SystemChat-2.0-Arabic/SystemChatArabic_sharegpt.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/dolphin-coder-translate-sharegpt2.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/dolphin-coder-codegen-sharegpt2.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
# type: sharegpt
# conversation: chatml
- path: /workspace/datasets/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/agent_instruct_react_unfiltered.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/toolbench_instruct_j1s1_3k_unfiltered.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/toolbench_negative_unfiltered.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/toolbench_react_10p_unfiltered.jsonl
# type: sharegpt
# conversation: chatml
# - path: /workspace/datasets/toolbench_tflan_cot_30p_unfiltered.jsonl
# type: sharegpt
# conversation: chatml
- path: /workspace/datasets/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
dataset_prepared_path: last_run_prepared
val_set_size: 0.03
output_dir: 0.5b out
sequence_len: 16384
sample_packing: true
pad_to_sequence_len: true
# adapter: qlora
# lora_r: 16
# lora_alpha: 32
# lora_dropout: 0.05
# lora_target_modules:
# - q_proj
# - k_proj
# - v_proj
# - o_proj
# - gate_proj
# - up_proj
# - down_proj
wandb_project: 2.9.3-qwen-2.9.3-qwen2-0.5b
# wandb_entity: oaaic
# wandb_watch:
# wandb_name:
# wandb_log_model:
gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 3
optimizer: adamw_8bit
lr_scheduler: constant
learning_rate: 1e-4
# max_grad_norm: 1.0
train_on_inputs: false
group_by_length: false
bf16: true
tf32: false
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: true
logging_steps: 1
flash_attention: true
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
warmup_steps: 10
# evals_per_epoch: 2
saves_per_epoch: 2
save_total_limit: 2
weight_decay: 0.1
special_tokens:
eos_token: <|im_end|>
0.5b out
This model is a fine-tuned version of Qwen/Qwen2-0.5B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9948
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- lr_scheduler_warmup_steps: 10
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0145 | 1.0111 | 933 | 1.0237 |
0.9716 | 2.0116 | 1867 | 0.9972 |
0.8939 | 2.9743 | 2766 | 0.9948 |
Framework versions
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1