llama3-discolm-orca
is a merge of the following models
- Locutusque/llama-3-neural-chat-v1-8b
- Locutusque/Llama-3-Orca-1.0-8B
- DiscoResearch/Llama3_DiscoLM_German_8b_v0.1_experimental
This was mostly a proof of concept test. GGUF 4k quants here: cstr/llama3-discolm-orca-GGUF
𧩠Configuration
LazyMergekit config:
models:
- model: Locutusque/Llama-3-Orca-1.0-8B
# no parameters necessary for base model
- model: Locutusque/llama-3-neural-chat-v1-8b
parameters:
density: 0.60
weight: 0.15
- model: DiscoResearch/Llama3_DiscoLM_German_8b_v0.1_experimental
parameters:
density: 0.65
weight: 0.7
merge_method: dare_ties
base_model: Locutusque/Llama-3-Orca-1.0-8B
parameters:
int8_mask: true
dtype: bfloat16
random_seed: 0
tokenizer_source: base
π» Usage
!pip install -qU transformers accelerate
from transformers import AutoTokenizer
import transformers
import torch
model = "cstr/llama3-discolm-orpo-t2"
messages = [{"role": "user", "content": "What is a large language model?"}]
tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
"text-generation",
model=model,
torch_dtype=torch.float16,
device_map="auto",
)
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
- Downloads last month
- 16
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for cstr/llama3-discolm-orca
Merge model
this model