chessgpt2-medium-l
This model is a fine-tuned version of gpt2-medium on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8574
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.025
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.1756 | 0.1280 | 2000 | 1.5178 |
1.4207 | 0.2560 | 4000 | 1.2728 |
1.265 | 0.3839 | 6000 | 1.1726 |
1.1852 | 0.5119 | 8000 | 1.1138 |
1.1321 | 0.6399 | 10000 | 1.0720 |
1.0931 | 0.7679 | 12000 | 1.0384 |
1.0621 | 0.8958 | 14000 | 1.0097 |
1.0319 | 1.0238 | 16000 | 0.9891 |
0.9981 | 1.1518 | 18000 | 0.9680 |
0.9816 | 1.2798 | 20000 | 0.9498 |
0.9655 | 1.4077 | 22000 | 0.9360 |
0.951 | 1.5357 | 24000 | 0.9219 |
0.9386 | 1.6637 | 26000 | 0.9094 |
0.9264 | 1.7917 | 28000 | 0.8974 |
0.9154 | 1.9196 | 30000 | 0.8876 |
0.8973 | 2.0476 | 32000 | 0.8804 |
0.8734 | 2.1756 | 34000 | 0.8743 |
0.8684 | 2.3036 | 36000 | 0.8683 |
0.8638 | 2.4315 | 38000 | 0.8647 |
0.86 | 2.5595 | 40000 | 0.8611 |
0.8581 | 2.6875 | 42000 | 0.8589 |
0.8557 | 2.8155 | 44000 | 0.8579 |
0.8556 | 2.9434 | 46000 | 0.8574 |
Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1
- Downloads last month
- 32
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for dakwi/chessgpt2-medium-l
Base model
openai-community/gpt2-medium