|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: allenai/led-base-16384 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: led_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# led_model |
|
|
|
This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4363 |
|
- Rouge1: 0.7117 |
|
- Rouge2: 0.5663 |
|
- Rougel: 0.684 |
|
- Rougelsum: 0.6843 |
|
- Gen Len: 15.7955 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 0.6184 | 0.9995 | 546 | 0.4788 | 0.699 | 0.5474 | 0.6691 | 0.6694 | 15.7362 | |
|
| 0.4523 | 1.9991 | 1092 | 0.4435 | 0.7029 | 0.5569 | 0.6773 | 0.6773 | 15.6763 | |
|
| 0.3732 | 2.9986 | 1638 | 0.4392 | 0.7104 | 0.565 | 0.6826 | 0.6827 | 15.8442 | |
|
| 0.3249 | 3.9982 | 2184 | 0.4363 | 0.7117 | 0.5663 | 0.684 | 0.6843 | 15.7955 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.2 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 3.0.0 |
|
- Tokenizers 0.19.1 |
|
|