|
--- |
|
language: es |
|
license: afl-3.0 |
|
tags: |
|
- generated_from_trainer |
|
- sentiment |
|
- emotion |
|
metrics: |
|
- accuracy |
|
widget: |
|
- text: La vida no merece la pena |
|
example_title: Ejemplo 1 |
|
- text: Para vivir así lo mejor es estar muerto |
|
example_title: Ejemplo 2 |
|
- text: me siento triste por no poder viajar |
|
example_title: Ejemplo 3 |
|
- text: Quiero terminar con todo |
|
example_title: Ejemplo 4 |
|
- text: Disfruto de la vista |
|
example_title: Ejemplo 5 |
|
base_model: mrm8488/electricidad-small-discriminator |
|
model-index: |
|
- name: electricidad-small-discriminator-finetuned-clasificacion-texto-suicida |
|
results: [] |
|
--- |
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
# electricidad-small-discriminator-finetuned-clasificacion-texto-suicida |
|
This model is a fine-tuned version of [mrm8488/electricidad-small-discriminator](https://huggingface.co/mrm8488/electricidad-small-discriminator) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0458 |
|
- Accuracy: 0.9916 |
|
## Model description |
|
More information needed |
|
## Intended uses & limitations |
|
More information needed |
|
## Training and evaluation data |
|
More information needed |
|
## Training procedure |
|
### Training hyperparameters |
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 15 |
|
### Training results |
|
| Training Loss | Epoch | Validation Loss | Accuracy | |
|
|:-------------:|:-----:|:---------------:|:--------:| |
|
| 0.161100 | 1.0 | 0.133057 | 0.952718 | |
|
| 0.134500 | 2.0 | 0.110966 | 0.960804 | |
|
| 0.108500 | 3.0 | 0.086417 | 0.970835 | |
|
| 0.099400 | 4.0 | 0.073618 | 0.974856 | |
|
| 0.090500 | 5.0 | 0.065231 | 0.979629 | |
|
| 0.080700 | 6.0 | 0.060849 | 0.982324 | |
|
| 0.069200 | 7.0 | 0.054718 | 0.986125 | |
|
| 0.060400 | 8.0 | 0.051153 | 0.985948 | |
|
| 0.048200 | 9.0 | 0.045747 | 0.989748 | |
|
| 0.045500 | 10.0 | 0.049992 | 0.988069 | |
|
| 0.043400 | 11.0 | 0.046325 | 0.990234 | |
|
| 0.034300 | 12.0 | 0.050746 | 0.989792 | |
|
| 0.032900 | 13.0 | 0.043434 | 0.991737 | |
|
| 0.028400 | 14.0 | 0.045003 | 0.991869 | |
|
| 0.022300 | 15.0 | 0.045819 | 0.991648 | |
|
|
|
|
|
### Framework versions |
|
- Transformers 4.17.0 |
|
- Pytorch 1.10.0+cu111 |
|
- Datasets 2.0.0 |
|
- Tokenizers 0.11.6 |
|
|