File size: 3,237 Bytes
fc8aba4 32a36e0 2f380cf fc8aba4 2f380cf fc8aba4 2f380cf fc8aba4 2f380cf fc8aba4 3e0bf0a fc8aba4 a99b465 fc8aba4 a99b465 fc8aba4 a99b465 fc8aba4 2f380cf fc8aba4 2f380cf fc8aba4 a99b465 fc8aba4 a99b465 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 |
---
size_categories:
- 1K<n<10K
task_categories:
- depth-estimation
- image-segmentation
paperswithcode_id: nyuv2
tags:
- depth-estimation
- semantic-segmentation
dataset_info:
features:
- name: image
dtype: image
- name: depth
dtype:
array2_d:
shape:
- 640
- 480
dtype: float32
- name: label
dtype:
array2_d:
shape:
- 640
- 480
dtype: int32
- name: scene
dtype: string
- name: scene_type
dtype: string
- name: accelData
sequence: float32
length: 4
splits:
- name: train
num_bytes: 4096489803
num_examples: 1449
download_size: 2972037809
dataset_size: 4096489803
---
# NYU Depth Dataset V2
This is an unofficial Hugging Face downloading script of the [NYU Depth Dataset V2](https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html). It downloads the data from the original source and converts it to the Hugging Face format.
This dataset contains the 1449 densely labeled pairs of aligned RGB and depth images.
## Dataset Description
- **Homepage:** [NYU Depth Dataset V2](https://cs.nyu.edu/~fergus/datasets/nyu_depth_v2.html)
- **Paper:** [Indoor Segmentation and Support Inference from RGBD Images](https://cs.nyu.edu/~fergus/datasets/indoor_seg_support.pdf)
## Official Description
The NYU-Depth V2 data set is comprised of video sequences from a variety of indoor scenes as recorded by both the RGB and Depth cameras from the Microsoft Kinect. It features:
* 1449 densely labeled pairs of aligned RGB and depth images
* 464 new scenes taken from 3 cities
* 407,024 new unlabeled frames
* Each object is labeled with a class and an instance number (cup1, cup2, cup3, etc)
This dataset is useful for various computer vision tasks, including depth estimation, semantic segmentation, and instance segmentation.
## Usage
```python
from datasets import load_dataset
dataset = load_dataset("0jl/NYUv2", trust_remote_code=True, split="train")
```
### Common Errors
* `fsspec.exceptions.FSTimeoutError`
Can occur for `datasets==3.0` when the download takes more than 5 minutes. This increases the timeout to 1 hour:
```python
import datasets, aiohttp
dataset = datasets.load_dataset(
"0jl/NYUv2",
trust_remote_code=True,
split="train",
storage_options={'client_kwargs': {'timeout': aiohttp.ClientTimeout(total=3600)}}
)
```
## Dataset Structure
The dataset contains only one training split with the following features:
- `image`: RGB image (PIL.Image.Image, shape: (640, 480, 3))
- `depth`: Depth map (2D array, shape: (640, 480), dtype: float32)
- `label`: Semantic segmentation labels (2D array, shape: (640, 480), dtype: int32)
- `scene`: Scene name (string)
- `scene_type`: Scene type (string)
- `accelData`: Acceleration data (list, shape: (4,), dtype: float32)
## Citation Information
If you use this dataset, please cite the original paper:
```bibtex
@inproceedings{Silberman:ECCV12,
author = {Nathan Silberman, Derek Hoiem, Pushmeet Kohli and Rob Fergus},
title = {Indoor Segmentation and Support Inference from RGBD Images},
booktitle = {Proceedings of the European Conference on Computer Vision},
year = {2012}
}
```
|