human
stringlengths
301
5k
In the case considered, this stimulus was the notion of the physical continuum, drawn from the rough data of the senses. But this notion leads to a series of contradictions from which it is necessary successively to free ourselves. So we are forced to imagine a more and more complicated system of symbols. That at which we stop is not only exempt from internal contradiction (it was so already at all the stages we have traversed), but neither is it in contradiction with various propositions called intuitive, which are derived from empirical notions more or less elaborated.
So far, I have only considered the order in which our terms are ranged. But for most applications that does not suffice. We must learn to compare the interval which separates any two terms. Only on this condition does the continuum become a measurable magnitude and the operations of arithmetic applicable.
This definition is arbitrary in a very large measure. It is not completely so, however. It is subjected to certain conditions and, for example, to the rules of commutativity and associativity of addition. But provided the definition chosen satisfies these rules, the choice is indifferent, and it is useless to particularize it.
Further, there are infinitesimals which are infinitely small in relation to those of the first order, and, on the contrary, infinitely great in relation to those of order 1 + ε, and that however small ε may be. Here, then, are new terms intercalated in our series, and if I may be permitted to revert to the phraseology lately employed which is very convenient though not consecrated by usage, I shall say that thus has been created a sort of continuum of the third order.
It would be easy to go further, but that would be idle; one would only be imagining symbols without possible application, and no one will think of doing that. The continuum of the third order, to which the consideration of the different orders of infinitesimals leads, is itself not useful enough to have won citizenship, and geometers regard it only as a mere curiosity. The mind uses its creative faculty only when experience requires it.
One must be very wise not to regard it as evident that every curve has a tangent; and in fact if we picture this curve and a straight as two narrow bands we can always so dispose them that they have a part in common without crossing. If we imagine then the breadth of these two bands to diminish indefinitely, this common part will always subsist and, at the limit, so to speak, the two lines will have a point in common without crossing, that is to say, they will be tangent.
Consider any two aggregates of sensations. Either we can discriminate them one from another, or we can not, just as in Fechner's experiments a weight of 10 grams can be distinguished from a weight of 12 grams, but not from a weight of 11 grams. This is all that is required to construct the continuum of several dimensions.
But suppose now that these imaginary animals, while remaining without thickness, have the form of a spherical, and not of a plane, figure, and are all on the same sphere without power to get off. What geometry will they construct? First it is clear they will attribute to space only two dimensions; what will play for them the rôle of the straight line will be the shortest path from one point to another on the sphere, that is to say, an arc of a great circle; in a word, their geometry will be the spherical geometry.
If we resume the comparison made above and imagine beings without thickness living on one of these surfaces, they will regard as possible the motion of a figure all of whose lines remain constant in length. On the contrary, such a movement would appear absurd to animals without thickness living on a surface of variable curvature.
Nothing remains then of the objection above formulated. This is not all. Lobachevski's geometry, susceptible of a concrete interpretation, ceases to be a vain logical exercise and is capable of applications; I have not the time to speak here of these applications, nor of the aid that Klein and I have gotten from them for the integration of linear differential equations.
Such, for example, is that of the equality of two figures; two figures are equal when they can be superposed; to superpose them one must be displaced until it coincides with the other; but how shall it be displaced? If we should ask this, no doubt we should be told that it must be done without altering the shape and as a rigid solid. The vicious circle would then be evident.
In fact this definition defines nothing; it would have no meaning for a being living in a world where there were only fluids. If it seems clear to us, that is because we are used to the properties of natural solids which do not differ much from those of the ideal solids, all of whose dimensions are invariable.
"It may happen that the motion of a rigid figure is such that all the points of a line belonging to this figure remain motionless while all the points situated outside of this line move. Such a line will be called a straight line." We have designedly, in this enunciation, separated the definition from the axiom it implies.
That is perfectly true, but most of these definitions are incompatible with the motion of a rigid figure, which in the theorem of Lie is supposed possible. These geometries of Riemann, in many ways so interesting, could never therefore be other than purely analytic and would not lend themselves to demonstrations analogous to those of Euclid.
We have seen above that we constantly reason as if the geometric figures behaved like solids. What geometry would borrow from experience would therefore be the properties of these bodies. The properties of light and its rectilinear propagation have also given rise to some of the propositions of geometry, and in particular those of projective geometry, so that from this point of view one would be tempted to say that metric geometry is the study of solids, and projective, that of light.
1º Because it is the simplest; and it is so not only in consequence of our mental habits, or of I know not what direct intuition that we may have of Euclidean space; it is the simplest in itself, just as a polynomial of the first degree is simpler than one of the second; the formulas of spherical trigonometry are more complicated than those of plane trigonometry, and they would still appear so to an analyst ignorant of their geometric signification.
Beings with minds like ours, and having the same senses as we, but without previous education, would receive from a suitably chosen external world impressions such that they would be led to construct a geometry other than that of Euclid and to localize the phenomena of that external world in a non-Euclidean space, or even in a space of four dimensions.
As for us, whose education has been accomplished by our actual world, if we were suddenly transported into this new world, we should have no difficulty in referring its phenomena to our Euclidean space. Conversely, if these beings were transported into our environment, they would be led to relate our phenomena to non-Euclidean space.
Sight, however, enables us to judge of distances and consequently to perceive a third dimension. But every one knows that this perception of the third dimension reduces itself to the sensation of the effort at accommodation it is necessary to make, and to that of the convergence which must be given to the two eyes, to perceive an object distinctly.
It has, it is true, precisely three dimensions, which means that the elements of our visual sensations (those at least which combine to form the notion of extension) will be completely defined when three of them are known; to use the language of mathematics, they will be functions of three independent variables.
It is only later, and as a consequence of new experiences, that we learn how to decompose the bodies of variable form into smaller elements, such that each is displaced almost in accordance with the same laws as solid bodies. Thus we distinguish 'deformations' from other changes of state; in these deformations, each element undergoes a mere change of position, which can be corrected, but the modification undergone by the aggregate is more profound and is no longer susceptible of correction by a correlative movement.
On the other hand, our body, thanks to the number of its articulations and muscles, may make a multitude of different movements; but all are not capable of 'correcting' a modification of external objects; only those will be capable of it in which our whole body, or at least all those of our sense-organs which come into play, are displaced as a whole, that is, without their relative positions varying, or in the fashion of a solid body.
But this is not the case; geometry is only the résumé of the laws according to which these images succeed each other. Nothing then prevents us from imagining a series of representations, similar in all points to our ordinary representations, but succeeding one another according to laws different from those to which we are accustomed.
If a sentient being happens to be in the neighborhood, his impressions will be modified by the displacement of the object, but he can reestablish them by moving in a suitable manner. It suffices if finally the aggregate of the object and the sentient being, considered as forming a single body, has undergone one of those particular displacements I have just called non-Euclidean. This is possible if it be supposed that the limbs of these beings dilate according to the same law as the other bodies of the world they inhabit.
If therefore negative parallaxes were found, or if it were demonstrated that all parallaxes are superior to a certain limit, two courses would be open to us; we might either renounce Euclidean geometry, or else modify the laws of optics and suppose that light does not travel rigorously in a straight line.
This, in fact, is a property which, in Euclidean or non-Euclidean space, belongs to the straight and belongs only to it. But how shall we ascertain experimentally whether it belongs to this or that concrete object? It will be necessary to measure distances, and how shall one know that any concrete magnitude which I have measured with my material instrument really represents the abstract distance?
I will explain myself: consider any material system; we shall have to regard, on the one hand, 'the state' of the various bodies of this system (for instance, their temperature, their electric potential, etc.), and, on the other hand, their position in space; and among the data which enable us to define this position we shall, moreover, distinguish the mutual distances of these bodies, which define their relative positions, from the conditions which define the absolute position of the system and its absolute orientation in space.
It is easy to see that this is an idle fear; in fact, to apply the law of relativity in all rigor, it must be applied to the entire universe. For if only a part of this universe were considered, and if the absolute position of this part happened to vary, the distances to the other bodies of the universe would likewise vary, their influence on the part of the universe considered would consequently augment or diminish, which might modify the laws of the phenomena happening there.
The state of bodies and their mutual distances at any instant, as well as the velocities with which these distances vary at this same instant, will depend only on the state of those bodies and their mutual distances at the initial instant, and the velocities with which these distances vary at this initial instant, but they will not depend either upon the absolute initial position of the system, or upon its absolute orientation, or upon the velocities with which this absolute position and orientation varied at the initial instant.
Suppose a man be transported to a planet whose heavens were always covered with a thick curtain of clouds, so that he could never see the other stars; on that planet he would live as if it were isolated in space. Yet this man could become aware that it turned, either by measuring its oblateness (done ordinarily by the aid of astronomic observations, but capable of being done by purely geodetic means), or by repeating the experiment of Foucault's pendulum. The absolute rotation of this planet could therefore be made evident.
To know the height of the mainmast does not suffice for calculating the age of the captain. When you have measured every bit of wood in the ship you will have many equations, but you will know his age no better. All your measurements bearing only on your bits of wood can reveal to you nothing except concerning these bits of wood. Just so your experiments, however numerous they may be, bearing only on the relations of bodies to one another, will reveal to us nothing about the mutual relations of the various parts of space.
7. Will you say that if the experiments bear on the bodies, they bear at least upon the geometric properties of the bodies? But, first, what do you understand by geometric properties of the bodies? I assume that it is a question of the relations of the bodies with space; these properties are therefore inaccessible to experiments which bear only on the relations of the bodies to one another. This alone would suffice to show that there can be no question of these properties.
Still let us begin by coming to an understanding about the sense of the phrase: geometric properties of bodies. When I say a body is composed of several parts, I assume that I do not enunciate therein a geometric property, and this would remain true even if I agreed to give the improper name of points to the smallest parts I consider.
These are determinations we may make without having in advance any notion about form or about the metric properties of space. They in no wise bear on the 'geometric properties of bodies.' And these determinations will not be possible if the bodies experimented upon move in accordance with a group having the same structure as the Lobachevskian group (I mean according to the same laws as solid bodies in Lobachevski's geometry). They suffice therefore to prove that these bodies move in accordance with the Euclidean group, or at least that they do not move according to the Lobachevskian group.
Therefore these new determinations are not possible if the bodies move according to the Euclidean group; but they become so if it be supposed that the bodies move according to the Lobachevskian group. They would suffice, therefore (if one made them), to prove that the bodies in question do not move according to the Euclidean group.
Thus, without making any hypothesis about form, about the nature of space, about the relations of bodies to space, and without attributing to bodies any geometric property, I have made observations which have enabled me to show in one case that the bodies experimented upon move according to a group whose structure is Euclidean, in the other case that they move according to a group whose structure is Lobachevskian.
In fact one could imagine (I say imagine) bodies moving so as to render possible the second series of determinations. And the proof is that the first mechanician met could construct such bodies if he cared to take the pains and make the outlay. You will not conclude from that, however, that space is non-Euclidean.
And in fact, the object, although moved away, may form its image at the same point of the retina. Sight responds yes, the object has remained at the same point and touch answers no, because my finger which just now touched the object, at present touches it no longer. If experience had shown us that one finger may respond no when the other says yes, we should likewise say that touch acts at a distance.
To each attitude corresponds thus a point; but it often happens that the same point corresponds to several different attitudes (in this case we say our finger has not budged, but the rest of the body has moved). We distinguish, therefore, among the changes of attitude those where the finger does not budge. How are we led thereto? It is because often we notice that in these changes the object which is in contact with the finger remains in contact with it.
In our mind pre-existed the latent idea of a certain number of groups—those whose theory Lie has developed. Which group shall we choose, to make of it a sort of standard with which to compare natural phenomena? And, this group chosen, which of its sub-groups shall we take to characterize a point of space? Experience has guided us by showing us which choice best adapts itself to the properties of our body. But its rôle is limited to that.
4º Finally, our Euclidean geometry is itself only a sort of convention of language; mechanical facts might be enunciated with reference to a non-Euclidean space which would be a guide less convenient than, but just as legitimate as, our ordinary space; the enunciation would thus become much more complicated, but it would remain possible.
Teachers of mechanics usually pass rapidly over the example of the ball; but they add that the principle of inertia is verified indirectly by its consequences. They express themselves badly; they evidently mean it is possible to verify various consequences of a more general principle, of which that of inertia is only a particular case.
In the first case, we must suppose that the velocity of a body depends only upon its position and upon that of the neighboring bodies; in the second case that the change of acceleration of a body depends only upon the position of this body and of the neighboring bodies, upon their velocities and upon their accelerations.
Let us slightly modify our fiction. Suppose a world analogous to our solar system, but where, by a strange chance, the orbits of all the planets are without eccentricity and without inclination. Suppose further that the masses of these planets are too slight for their mutual perturbations to be sensible. Astronomers inhabiting one of these planets could not fail to conclude that the orbit of a star can only be circular and parallel to a certain plane; the position of a star at a given instant would then suffice to determine its velocity and its whole path. The law of inertia which they would adopt would be the first of the two hypothetical laws I have mentioned.
Imagine now that this system is some day traversed with great velocity by a body of vast mass, coming from distant constellations. All the orbits would be profoundly disturbed. Still our astronomers would not be too greatly astonished; they would very well divine that this new star was alone to blame for all the mischief. "But," they would say, "when it is gone, order will of itself be reestablished; no doubt the distances of the planets from the sun will not revert to what they were before the cataclysm, but when the perturbing star is gone, the orbits will again become circular."
For this principle to be only in appearance true, for one to have cause to dread having some day to replace it by one of the analogous principles I have just now contrasted with it, would be necessary our having been misled by some amazing chance, like that which, in the fiction above developed, led into error our imaginary astronomers.
Such a hypothesis is too unlikely to delay over. No one will believe that such coincidences can happen; no doubt the probability of two eccentricities being both precisely null, to within errors of observation, is not less than the probability of one being precisely equal to 0.1, for instance, and the other to 0.2, to within errors of observation. The probability of a simple event is not less than that of a complicated event; and yet, if the first happens, we shall not consent to attribute it to chance; we should not believe that nature had acted expressly to deceive us. The hypothesis of an error of this sort being discarded, it may therefore be admitted that in so far as astronomy is concerned, our law has been verified by experiment.
There it seems we have a means of defining mass; the position of the center of gravity evidently depends on the values attributed to the masses; it will be necessary to dispose of these values in such a way that the motion of the center of gravity may be rectilinear and uniform; this will always be possible if Newton's third law is true, and possible in general only in a single way.
We could reconstruct all mechanics by attributing different values to all the masses. This new mechanics would not be in contradiction either with experience or with the general principles of dynamics (principle of inertia, proportionality of forces to masses and to accelerations, equality of action and reaction, rectilinear and uniform motion of the center of gravity, principle of areas).
Hertz has raised the question whether the principles of mechanics are rigorously true. "In the opinion of many physicists," he says, "it is inconceivable that the remotest experience should ever change anything in the immovable principles of mechanics; and yet, what comes from experience may always be rectified by experience." After what we have just said, these fears will appear groundless.
Whatever does not teach us to measure it is as useless to mechanics as is, for instance, the subjective notion of warmth and cold to the physicist who is studying heat. This subjective notion can not be translated into numbers, therefore it is of no use; a scientist whose skin was an absolutely bad conductor of heat and who, consequently, would never have felt either sensations of cold or sensations of warmth, could read a thermometer just as well as any one else, and that would suffice him for constructing the whole theory of heat.
But, after all, what have we done? We have defined the force to which the thread is subjected by the deformation undergone by this thread, which is reasonable enough; we have further assumed that if a body is attached to this thread, the effort transmitted to it by the thread is equal to the action this body exercises on this thread; after all, we have therefore used the principle of the equality of action and reaction, in considering it, not as an experimental truth, but as the very definition of force.
All forces are not transmitted by threads (besides, to be able to compare them, they would all have to be transmitted by identical threads). Even if it should be conceded that the earth is attached to the sun by some invisible thread, at least it would be admitted that we have no means of measuring its elongation.
Why then take this détour? You admit a certain definition of force which has a meaning only in certain particular cases. In these cases you verify by experiment that it leads to the law of acceleration. On the strength of this experiment, you then take the law of acceleration as a definition of force in all the other cases.
Would it not be simpler to consider the law of acceleration as a definition in all cases, and to regard the experiments in question, not as verifications of this law, but as verifications of the principle of reaction, or as demonstrating that the deformations of an elastic body depend only on the forces to which this body is subjected?
Andrade's ideas are nevertheless very interesting; if they do not satisfy our logical craving, they make us understand better the historic genesis of the fundamental ideas of mechanics. The reflections they suggest show us how the human mind has raised itself from a naïve anthropomorphism to the present conceptions of science.
Are the law of acceleration, the rule of the composition of forces then only arbitrary conventions? Conventions, yes; arbitrary, no; they would be if we lost sight of the experiments which led the creators of the science to adopt them, and which, imperfect as they may be, suffice to justify them. It is well that from time to time our attention is carried back to the experimental origin of these conventions.
Assume it then, and consider a body subjected to a force; the relative motion of this body, in reference to an observer moving with a uniform velocity equal to the initial velocity of the body, must be identical to what its absolute motion would be if it started from rest. We conclude hence that its acceleration can not depend upon its absolute velocity; the attempt has even been made to derive from this a demonstration of the law of acceleration.
There long were traces of this demonstration in the regulations for the degree B. ès Sc. It is evident that this attempt is idle. The obstacle which prevented our demonstrating the law of acceleration is that we had no definition of force; this obstacle subsists in its entirety, since the principle invoked has not furnished us the definition we lacked.
Thus enunciated, in fact, the principle of relative motion singularly resembles what I called above the generalized principle of inertia; it is not altogether the same thing, since it is a question of the differences of coordinates and not of the coordinates themselves. The new principle teaches us therefore something more than the old, but the same discussion is applicable and would lead to the same conclusions; it is unnecessary to return to it.
I will pause longer on the case of relative motions referred to axes which rotate uniformly. If the heavens were always covered with clouds, if we had no means of observing the stars, we nevertheless might conclude that the earth turns round; we could learn this from its flattening or again by the Foucault pendulum experiment.
Many difficulties, however, would soon awaken their attention; if they succeeded in realizing an isolated system, the center of gravity of this system would not have an almost rectilinear path. They would invoke, to explain this fact, the centrifugal forces which they would regard as real, and which they would attribute no doubt to the mutual actions of the bodies. Only they would not see these forces become null at great distances, that is to say in proportion as the isolation was better realized; far from it; centrifugal force increases indefinitely with the distance.
But this is not all. Space is symmetric, and yet the laws of motion would not show any symmetry; they would have to distinguish between right and left. It would be seen for instance that cyclones turn always in the same sense, whereas by reason of symmetry these winds should turn indifferently in one sense and in the other. If our scientists by their labor had succeeded in rendering their universe perfectly symmetric, this symmetry would not remain, even though there was no apparent reason why it should be disturbed in one sense rather than in the other.
They would get themselves out of the difficulty doubtless, they would invent something which would be no more extraordinary than the glass spheres of Ptolemy, and so it would go on, complications accumulating, until the long-expected Copernicus sweeps them all away at a single stroke, saying: It is much simpler to assume the earth turns round.
And just as our Copernicus said to us: It is more convenient to suppose the earth turns round, since thus the laws of astronomy are expressible in a much simpler language; this one would say: It is more convenient to suppose the earth turns round, since thus the laws of mechanics are expressible in a much simpler language.
We have seen that the coordinates of bodies are determined by differential equations of the second order, and that so are the differences of these coordinates. This is what we have called the generalized principle of inertia and the principle of relative motion. If the distances of these bodies were determined likewise by equations of the second order, it seems that the mind ought to be entirely satisfied. In what measure does the mind get this satisfaction and why is it not content with it?
But here two different points of view may be taken; we may distinguish two sorts of constants. To the eyes of the physicist the world reduces to a series of phenomena, depending, on the one hand, solely upon the initial phenomena; on the other hand, upon the laws which bind the consequents to the antecedents. If then observation teaches us that a certain quantity is a constant, we shall have the choice between two conceptions.
For example, in virtue of Newton's laws, the duration of the revolution of the earth must be constant. But if it is 366 sidereal days and something over, and not 300 or 400, this is in consequence of I know not what initial chance. This is an accidental constant. If, on the contrary, the exponent of the distance which figures in the expression of the attractive force is equal to −2 and not to −3, this is not by chance, but because Newton's law requires it. This is an essential constant.
A word in passing to forestall an objection: the inhabitants of this imaginary world could neither observe nor define the area-constant as we do, since the absolute longitudes escape them; that would not preclude their being quickly led to notice a certain constant which would introduce itself naturally into their equations and which would be nothing but what we call the area-constant.
But then see what would happen. If the area-constant is regarded as essential, as depending upon a law of nature, to calculate the distances of the planets at any instant it will suffice to know the initial values of these distances and those of their first derivatives. From this new point of view, the distances will be determined by differential equations of the second order.
Yet would the mind of these astronomers be completely satisfied? I do not believe so; first, they would soon perceive that in differentiating their equations and thus raising their order, these equations became much simpler. And above all they would be struck by the difficulty which comes from symmetry. It would be necessary to assume different laws, according as the aggregate of the planets presented the figure of a certain polyhedron or of the symmetric polyhedron, and one would escape from this consequence only by regarding the area-constant as accidental.
I have taken a very special example, since I have supposed astronomers who did not at all consider terrestrial mechanics, and whose view was limited to the solar system. Our universe is more extended than theirs, as we have fixed stars, but still it too is limited, and so we might reason on the totality of our universe as the astronomers on their solar system.
If we will not admit that this may be simply one of the second derivatives, we have only the choice of hypotheses. Either it may be supposed, as is ordinarily done, that this something else is the absolute orientation of the universe in space, or the rapidity with which this orientation varies; and this supposition may be correct; it is certainly the most convenient solution for geometry; it is not the most satisfactory for the philosopher, because this orientation does not exist.
Or it may be supposed that this something else is the position or the velocity of some invisible body; this has been done by certain persons who have even called it the body alpha, although we are doomed never to know anything of this body but its name. This is an artifice entirely analogous to that of which I spoke at the end of the paragraph devoted to my reflections on the principle of inertia.
Suppose an isolated system formed of a certain number of material points; suppose these points subjected to forces depending only on their relative position and their mutual distances, and independent of their velocities. In virtue of the principle of the conservation of energy, a function of forces must exist.
In this simple case the enunciation of the principle of the conservation of energy is of extreme simplicity. A certain quantity, accessible to experiment, must remain constant. This quantity is the sum of two terms; the first depends only on the position of the material points and is independent of their velocities; the second is proportional to the square of these velocities. This resolution can take place only in a single way.
This molecule seems to know the point whither it is to go, to foresee the time it would take to reach it by such and such a route, and then to choose the most suitable path. The statement presents the molecule to us, so to speak, as a living and free being. Clearly it would be better to replace it by an enunciation less objectionable, and where, as the philosophers would say, final causes would not seem to be substituted for efficient causes.
If the system is not regarded as completely isolated, it is probable that the rigorously exact expression of its internal energy will depend on the state of the external bodies. Again, I have above supposed the sum of the external work was null, and if we try to free ourselves from this rather artificial restriction, the enunciation becomes still more difficult.
But this word reminds me that I am digressing and am on the point of leaving the domain of mathematics and physics. I check myself therefore and will stress of all this discussion only one impression, that Mayer's law is a form flexible enough for us to put into it almost whatever we wish. By that I do not mean it corresponds to no objective reality, nor that it reduces itself to a mere tautology, since, in each particular case, and provided one does not try to push to the absolute, it has a perfectly clear meaning.
Almost everything I have just said applies to the principle of Clausius. What distinguishes it is that it is expressed by an inequality. Perhaps it will be said it is the same with all physical laws, since their precision is always limited by errors of observation. But they at least claim to be first approximations, and it is hoped to replace them little by little by laws more and more precise. If, on the other hand, the principle of Clausius reduces to an inequality, this is not caused by the imperfection of our means of observation, but by the very nature of the question.
If these postulates possess a generality and a certainty which are lacking to the experimental verities whence they are drawn, this is because they reduce in the last analysis to a mere convention which we have the right to make, because we are certain beforehand that no experiment can ever contradict it.
At first blush, the analogy is complete; the rôle of experiment seems the same. One will therefore be tempted to say: Either mechanics must be regarded as an experimental science, and then the same must hold for geometry; or else, on the contrary, geometry is a deductive science, and then one may say as much of mechanics.
On the contrary, the fundamental conventions of mechanics, and the experiments which prove to us that they are convenient, bear on exactly the same objects or on analogous objects. The conventional and general principles are the natural and direct generalization of the experimental and particular principles.
Let it not be said that thus I trace artificial frontiers between the sciences; that if I separate by a barrier geometry properly so called from the study of solid bodies, I could just as well erect one between experimental mechanics and the conventional mechanics of the general principles. In fact, who does not see that in separating these two sciences I mutilate them both, and that what will remain of conventional mechanics when it shall be isolated will be only a very small thing and can in no way be compared to that superb body of doctrine called geometry?
Besides, if we study mechanics, it is to apply it; and we can apply it only if it remains objective. Now, as we have seen, what the principles gain in generality and certainty they lose in objectivity. It is, therefore, above all with the objective side of the principles that we must be familiarized early, and that can be done only by going from the particular to the general, instead of the inverse.
And above all the scientist must foresee. Carlyle has somewhere said something like this: "Nothing but facts are of importance. John Lackland passed by here. Here is something that is admirable. Here is a reality for which I would give all the theories in the world." Carlyle was a fellow countryman of Bacon; but Bacon would not have said that. That is the language of the historian. The physicist would say rather: "John Lackland passed by here; that makes no difference to me, for he never will pass this way again."
For without generalization foreknowledge is impossible. The circumstances under which one has worked will never reproduce themselves all at once. The observed action then will never recur; the only thing that can be affirmed is that under analogous circumstances an analogous action will be produced. In order to foresee, then, it is necessary to invoke at least analogy, that is to say, already then to generalize.
It is often said experiments must be made without a preconceived idea. That is impossible. Not only would it make all experiment barren, but that would be attempted which could not be done. Every one carries in his mind his own conception of the world, of which he can not so easily rid himself. We must, for instance, use language; and our language is made up only of preconceived ideas and can not be otherwise. Only these are unconscious preconceived ideas, a thousand times more dangerous than the others.
Shall we say that if we introduce others, of which we are fully conscious, we shall only aggravate the evil? I think not. I believe rather that they will serve as counterbalances to each other—I was going to say as antidotes; they will in general accord ill with one another—they will come into conflict with one another, and thereby force us to regard things under different aspects. This is enough to emancipate us. He is no longer a slave who can choose his master.
It is clear that any fact can be generalized in an infinity of ways, and it is a question of choice. The choice can be guided only by considerations of simplicity. Let us take the most commonplace case, that of interpolation. We pass a continuous line, as regular as possible, between the points given by observation. Why do we avoid points making angles and too abrupt turns? Why do we not make our curve describe the most capricious zig-zags? It is because we know beforehand, or believe we know, that the law to be expressed can not be so complicated as all that.
We may calculate the mass of Jupiter from either the movements of its satellites, or the perturbations of the major planets, or those of the minor planets. If we take the averages of the determinations obtained by these three methods, we find three numbers very close together, but different. We might interpret this result by supposing that the coefficient of gravitation is not the same in the three cases. The observations would certainly be much better represented. Why do we reject this interpretation? Not because it is absurd, but because it is needlessly complicated. We shall only accept it when we are forced to, and that is not yet.
This custom is imposed upon physicists by the causes that I have just explained. But how shall we justify it in the presence of discoveries that show us every day new details that are richer and more complex? How shall we even reconcile it with the belief in the unity of nature? For if everything depends on everything, relationships where so many diverse factors enter can no longer be simple.
Examples of the opposite abound. In the kinetic theory of gases, one deals with molecules moving with great velocities, whose paths, altered by incessant collisions, have the most capricious forms and traverse space in every direction. The observable result is Mariotte's simple law. Every individual fact was complicated. The law of great numbers has reestablished simplicity in the average. Here the simplicity is merely apparent, and only the coarseness of our senses prevents our perceiving the complexity.
Many phenomena obey a law of proportionality. But why? Because in these phenomena there is something very small. The simple law observed, then, is only a result of the general analytical rule that the infinitely small increment of a function is proportional to the increment of the variable. As in reality our increments are not infinitely small, but very small, the law of proportionality is only approximate, and the simplicity is only apparent. What I have just said applies to the rule of the superposition of small motions, the use of which is so fruitful, and which is the basis of optics.
And Newton's law itself? Its simplicity, so long undetected, is perhaps only apparent. Who knows whether it is not due to some complicated mechanism, to the impact of some subtile matter animated by irregular movements, and whether it has not become simple only through the action of averages and of great numbers? In any case, it is difficult not to suppose that the true law contains complementary terms, which would become sensible at small distances. If in astronomy they are negligible as modifying Newton's law, and if the law thus regains its simplicity, it would be only because of the immensity of celestial distances.
For that purpose, let us see what part is played in our generalizations by the belief in simplicity. We have verified a simple law in a good many particular cases; we refuse to admit that this agreement, so often repeated, is simply the result of chance, and conclude that the law must be true in the general case.
What does it matter then whether the simplicity be real, or whether it covers a complex reality? Whether it is due to the influence of great numbers, which levels down individual differences, or to the greatness or smallness of certain quantities, which allows us to neglect certain terms, in no case is it due to chance. This simplicity, real or apparent, always has a cause. We can always follow, then, the same course of reasoning, and if a simple law has been observed in several particular cases, we can legitimately suppose that it will still be true in analogous cases. To refuse to do this would be to attribute to chance an inadmissible rôle.
There is, however, a difference. If the simplicity were real and essential, it would resist the increasing precision of our means of measure. If then we believe nature to be essentially simple, we must, from a simplicity that is approximate, infer a simplicity that is rigorous. This is what was done formerly; and this is what we no longer have a right to do.
Well, even this ill humor is not justified. The physicist who has just renounced one of his hypotheses ought, on the contrary, to be full of joy; for he has found an unexpected opportunity for discovery. His hypothesis, I imagine, had not been adopted without consideration; it took account of all the known factors that it seemed could enter into the phenomenon. If the test does not support it, it is because there is something unexpected and extraordinary; and because there is going to be something found that is unknown and new.
Has the discarded hypothesis, then, been barren? Far from that, it may be said it has rendered more service than a true hypothesis. Not only has it been the occasion of the decisive experiment, but, without having made the hypothesis, the experiment would have been made by chance, so that nothing would have been derived from it. One would have seen nothing extraordinary; only one fact the more would have been catalogued without deducing from it the least consequence.